1
|
Farhan A, Khalid A, Maqsood N, Iftekhar S, Sharif HMA, Qi F, Sillanpää M, Asif MB. Progress in layered double hydroxides (LDHs): Synthesis and application in adsorption, catalysis and photoreduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169160. [PMID: 38086474 DOI: 10.1016/j.scitotenv.2023.169160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Layered double hydroxides (LDHs), also known as anionic clays, have attracted significant attention in energy and environmental applications due to their exceptional physicochemical properties. These materials possess a unique structure with surface hydroxyl groups, tunable properties, and high stability, making them highly desirable. In this review, the synthesis and functionalization of LDHs have been explored including co-precipitation and hydrothermal methods. Furthermore, extensive research on LDH application in toxic pollutant removal has shown that modifying or functionalizing LDHs using materials such as activated carbon, polymers, and inorganics is crucial for achieving efficient pollutant adsorption, improved cyclic performance, as well as effective catalytic oxidation of organics and photoreduction. This study offers a comprehensive overview of the progress made in the field of LDHs and LDH-based composites for water and wastewater treatment. It critically discusses and explains both direct and indirect synthesis and modification techniques, highlighting their advantages and disadvantages. Additionally, this review critically discusses and explains the potential of LDH-based composites as absorbents. Importantly, it focuses on the capability of LDH and LDH-based composites in heterogeneous catalysis, including the Fenton reaction, Fenton-like reactions, photocatalysis, and photoreduction, for the removal of organic dyes, organic micropollutants, and heavy metals. The mechanisms involved in pollutant removal, such as adsorption, electrostatic interaction, complexation, and degradation, are thoroughly explained. Finally, this study outlines future research directions in the field.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aman Khalid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nimra Maqsood
- Department of Chemistry, University of Science and Technology, Hefei, China
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein, South Africa; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand, India; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
2
|
Zhang W, Liang J, Wang S, Lin M, Li J, Chen L, Zhang Y, Jiao T. Enhanced sequestration of Pb 2+ and Cu 2+ by Artemia cyst shell supported nano-Mg composite and the potential photocatalytic performance of carbonized exhausted-adsorbent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123287. [PMID: 38171426 DOI: 10.1016/j.envpol.2024.123287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/05/2024]
Abstract
This study reported a new strategy for enhanced Pb2+ and Cu2+ sequestration by Artemia cyst shell (shell) supported nano-Mg from aqueous solutions and the carbonated exhausted-adsorbents sequenced potential application in photo-catalyst, which obtained two expected results. One is that the immobilization of nano-Mg onto Artemia cyst shell (shell-Mg) can greatly strengthen the adsorption effect of the neat cyst shell on Pb2+ and Cu2+. The adsorption capacities of shell-Mg for both metal ions reached to 622.01 and 313.91 mg/g, which was 10-15 and 30-50 times that of the neat shell respectively. And shell-Mg has strong selectivity, which was approximately 2-4 times that of shell. The shell-Mg can be used to retrieve Pb2+ and Cu2+ from aqueous solutions efficiently. Another is that the carbonated exhausted-adsorbents (C-shell-Mg-Pb and C-shell-Mg-Cu) showed their potential photocatalytic degradation effects on congo red under pH = 4 condition, the decolorization rate reached to 61.19% and 80.39% respectively. Reuse of exhausted adsorbents can avoid the secondary pollution caused by the regeneration, extend the utilization value of exhausted adsorbents, and provide a new viewpoint for the reuse of spent bio-nanomaterial adsorbents.
Collapse
Affiliation(s)
- Wanyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, PR China
| | - Jian Liang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, PR China
| | - Sufeng Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Mingyang Lin
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, PR China
| | - Jingshan Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, PR China
| | - Li Chen
- Hebei Ocean & Fisheries Science Research Institute, Qinhuangdao, 066200, PR China
| | - Yingchao Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, PR China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, PR China
| |
Collapse
|
3
|
Yakout S, Youssef A. Engineering of efficient visible light photocatalysts: Ti1–+Cu La O2 (x = 0.03, y = 0, 0.005, 0.01) compositions. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Liu F, Zhao M, Chen K, Hu M, Xue D. Ce 3+ ion regulated CoNi-hydroxides for ultrahigh charge rate supercapacitors. CrystEngComm 2023. [DOI: 10.1039/d3ce00180f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
α-form Ce3+:CoNi-LDH//AC supercapacitors exhibited an energy density of 30 W h kg−1 at a power density of 10 kW kg−1 thanks the unique crystal and electronic structures of Ce3+:CoNi-LDH.
Collapse
Affiliation(s)
- Fei Liu
- Wuhan Institute of Marine Electric Propulsion, CSSC, Wuhan 430064, China
| | - Mengying Zhao
- Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Kunfeng Chen
- Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mei Hu
- Wuhan Institute of Marine Electric Propulsion, CSSC, Wuhan 430064, China
| | - Dongfeng Xue
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
5
|
Akdağ S, Sadeghi Rad T, Keyikoğlu R, Orooji Y, Yoon Y, Khataee A. Peroxydisulfate-assisted sonocatalytic degradation of metribuzin by La-doped ZnFe layered double hydroxide. ULTRASONICS SONOCHEMISTRY 2022; 91:106236. [PMID: 36442410 PMCID: PMC9709225 DOI: 10.1016/j.ultsonch.2022.106236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 05/12/2023]
Abstract
Metribuzin is an herbicide that easily contaminates ground and surface water. Herein, La-doped ZnFe layered double hydroxide (LDH) was synthesized for the first time and used for the degradation of metribuzin via ultrasonic (US) assisted peroxydisulfate (PDS) activation. The synthesized LDH had a lamellar structure, an average thickness of 26 nm, and showed mesoporous characteristics, including specific surface area 110.93 m2 g-1, pore volume 0.27 cm3 g-1, and pore diameter 9.67 nm. The degradation efficiency of the US/La-doped ZnFe LDH/PDS process (79.1 %) was much greater than those of the sole processes, and the synergy factor was calculated as 3.73. The impact of the reactive species on the sonocatalytic process was evaluated using different scavengers. After four consecutive cycles, 10.8 % loss occurred in the sonocatalytic activity of the La-doped LDH. Moreover, the efficiency of the US/La-doped LDH/PDS process was studied with respect to the degradation of metribuzin in a wastewater matrix. According to GC-MS analysis, six by-products were detected during the degradation of metribuzin. Our results indicate that the US/La-doped ZnFe LDH/PDS process has great potential for efficient degradation of metribuzin-contaminated water and wastewater.
Collapse
Affiliation(s)
- Sultan Akdağ
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Tannaz Sadeghi Rad
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Ramazan Keyikoğlu
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey; Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Turkey
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, South Korea.
| | - Alireza Khataee
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| |
Collapse
|
6
|
Seliverstov ES, Golovin SN, Lebedeva OE. Layered Double Hydroxides Containing Rare Earth Cations: Synthesis and Applications. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.867615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this mini-review, we describe the currently available literature concerning synthesis and applications of layered double hydroxides (LDHs) containing rare earth cations (RE-LDHs), focusing on the catalytic activity of those compounds. The lack of studies of some rare earth elements (REE) and the insufficient knowledge of their catalytic activity in the structure of LDHs indicate the need for further research.
Collapse
|