1
|
Vu TH, Yu BJ, Kim MI. Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline. BIOSENSORS 2024; 14:563. [PMID: 39727828 DOI: 10.3390/bios14120563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Choline is an important molecule in monitoring food safety and infant nutrition. Here, we report Ce nanogels synthesized by atom transfer radical polymerization (ATRP) employing Ce-coordinated acryloyl-lysine polymer brushes (Ce@SiO2 NGs) as highly efficient cascade nanozymes for colorimetric detection of choline. The synthesized Ce@SiO2 NGs demonstrated remarkable peroxidase-like activity with a porous exterior, which are essential to entrap choline oxidase (COx) to yield COx@Ce@SiO2 NGs and construct a cascade reaction system to detect choline. Immobilized COx catalyzed the oxidation of choline in food samples to produce H2O2, which subsequently induced the oxidation of chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue color signals. This method enabled the selective and sensitive detection of target choline with a satisfactory linear range of 4-400 μM, which is sufficient to analyze foodborne choline. The practical utility of the COx@Ce@SiO2 NG-based assay was successfully validated to determine choline spiked in commercially available milk and infant formula with high accuracy and precision values. This approach provides a simple and affordable method of choline detection and has the potential to lead to more developments in ATRP-based nanozymes for diverse biosensing applications.
Collapse
Affiliation(s)
- Trung Hieu Vu
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
| | - Byung Jo Yu
- Low-Carbon Transition R&D Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
| |
Collapse
|
2
|
Al-Roujayee AS, Hilaj E, Deepak A, Jyothi SR, Hamid JA, Ariffin IA, Saraswat V, Garg A. Alginate-based systems: advancements in drug delivery and wound healing. INT J POLYM MATER PO 2024:1-29. [DOI: 10.1080/00914037.2024.2375343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/28/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Abdulaziz S. Al-Roujayee
- Department of Dermatology and Venereology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Erina Hilaj
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, Tirana, Albania
| | - A. Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu, India
| | - S. Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | | | - I. A. Ariffin
- Management and Science University, Shah Alam, Malaysia
| | - Vivek Saraswat
- Institute of Engineering and Technology, GLA University, Mathura, Uttar Pradesh, India
| | - Avni Garg
- Department of Applied Sciences, Chandigarh Engineering Colleges, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| |
Collapse
|
3
|
Gou D, Qiu P, Wang Y, Hong F, Ren P, Cheng X, Wang L, Dou X, Liu T, Liu J, Zhang L, Zhao J. Multifunctional chitosan-based hydrogel wound dressing loaded with Acanthopanax senticosus and Osmundastrum cinnamomeum: Preparation, characterization and coagulation mechanism. J Mech Behav Biomed Mater 2024; 151:106384. [PMID: 38242071 DOI: 10.1016/j.jmbbm.2024.106384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Considerable potential exists for the development of natural polymer hydrogels that possess notable antibacterial and anti-inflammatory properties, along with excellent biocompatibility and mechanical attributes, to expedite the healing of skin wounds. Recent endeavors have focused on formulating an optimal hydrogel dressing for wound hemostasis and repair. In this pursuit, we have crafted a composite hydrogel using carboxymethyl chitosan and alginic acid, cross-linked with EDC/NHS, and enriched with extracts from Acanthopanax senticosus and Osmundastrum cinnamomeum. This synthesized hydrogel showcases commendable features, including significant swelling capacity (135 ± 3.6%), proficient water retention (94.421 ± 0.154%), and effective water vapor permeability (5845.011 ± 467.799 g/m2/d). Moreover, our drug-loaded hydrogels (CMCS/SA/AS/OC) have demonstrated remarkable efficacy in accelerating wound healing in both in vivo and in vitro models. On the 7th day, the wound healing rate reached 94.905% ± 0.498%, and by the 14th day, the wound was nearly fully healed (98.08% ± 0.323%) with the emergence of hair coverage. Furthermore, these hydrogels exhibited remarkable hemostatic properties, the platelet activity was 89.37% ± 1.29% and the platelet adhesion rate was 66.36% ± 1.42%. In order to elucidate the coagulation mechanism of the Acanthopanax senticosus and Osmundastrum cinnamomeum extracts, a network pharmacology approach was carried out. 41 active compounds and 107 potential therapeutic targets associated with these extracts were identified, revealing a total of 132 coagulation pathways. Platelet activation and complement and coagulation cascades pathways showed the highest levels of enrichment by KEGG analysis, serving as potential mechanisms through which the active components in AS/OC may facilitate coagulation by targeting relevant factors. In summary, our study has successfully developed an innovative drug-loaded hydrogel that not only enhances wound hemostasis and healing but also provides insights into the underlying mechanisms through network pharmacology. This work establishes a robust theoretical foundation for the medical application of our hydrogel.
Collapse
Affiliation(s)
- Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Fandi Hong
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Peirou Ren
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Xiaowen Cheng
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Lei Wang
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Xin Dou
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130103, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China.
| |
Collapse
|
4
|
Shao H, Wu X, Xiao Y, Yang Y, Ma J, Zhou Y, Chen W, Qin S, Yang J, Wang R, Li H. Recent research advances on polysaccharide-, peptide-, and protein-based hemostatic materials: A review. Int J Biol Macromol 2024; 261:129752. [PMID: 38280705 DOI: 10.1016/j.ijbiomac.2024.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/05/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Hemorrhage is a potentially life-threatening emergency that can occur at any time or place. Whether traumatic, congenital, surgical, disease-related, or drug-induced, bleeding can lead to severe complications or death. Therefore, the development of efficient hemostatic materials is critical. However, the results and prognosis demonstrated by clinical means of hemostasis do not reach expectations. With the development of technology, novel hemostatic materials have been developed from polysaccharides (chitosan, hyaluronic acid, alginate, cellulose, cyclodextrins, starch, dextran, and carrageenan), peptides (self-assembling peptides), and proteins (silk fibroin, collagen, gelatin, keratin, and thrombin). These new materials exhibit high hemostatic efficacy due to the enhancement or interaction of various hemostatic mechanisms. The main forms include adhesives, sealants, bandages, hemostatic powders, and hemostatic sponges. This article introduces the clotting process and principles of hemostatic methods and reviews the research on polysaccharide-, peptide-, and protein-based hemostatic materials in the last five years. The design ideas and hemostatic principles of polysaccharide-, peptide-, and protein-based hemostatic materials are mainly introduced. Finally, we summarize material designs, advantages, disadvantages, and challenges regarding hemostatic materials.
Collapse
Affiliation(s)
- Hanjie Shao
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Ying Xiao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Yanyu Yang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Jingyun Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315100, PR China
| | - Yang Zhou
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315100, PR China
| | - Wen Chen
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Shaoxia Qin
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Jiawei Yang
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China.
| | - Hong Li
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China.
| |
Collapse
|
5
|
Zhang Z, Wang J, Luo Y, Li C, Sun Y, Wang K, Deng G, Zhao L, Yuan C, Lu J, Chen Y, Wan J, Liu X. A pH-responsive ZC-QPP hydrogel for synergistic antibacterial and antioxidant treatment to enhance wound healing. J Mater Chem B 2023; 11:9300-9310. [PMID: 37727911 DOI: 10.1039/d3tb01567j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The problems of bacterial resistance and high oxidation level severely limit wound healing. Therefore, we constructed a multifunctional platform of chitosan quaternary ammonium salts (QCS)/polyvinyl alcohol (PVA)/polyethylene glycol (PEG) hydrogels (QPP) loaded with ZnO@CeO2 (ZC-QPP). Firstly, the hydrogel was co-cross-linked by hydrogen and borate ester bonds, which allows easy adherence to a tissue surface for offering a protective barrier and moist environment for wounds. The chitosan quaternary ammonium salts due to their amino groups have inherent antibacterial properties to induce bacterial death. In response to the acidic conditions of the bacterial infection microenvironment, the borate ester bonds in the QPP hydrogel break and the ZC NCs dispersed in the hydrogel are released. The gradual dissociation of Zn2+ under acidic conditions can directly damage bacterial membranes. The wound site of bacterial infection always causes overexpression of reactive oxygen species (ROS) levels, often leading to inflammation and preventing rapid wound repair. CeO2 can eliminate excess ROS to reduce the inflammatory response. From in vitro and in vivo results, the high biosafety of the ZC-QPP hydrogel has demonstrated excellent antibacterial and antioxidant performance to enhance wound healing. Therefore, the ZC-QPP hydrogel opens a method to develop multifunctional synergistic therapeutic platforms combining enzyme-like nanomaterials with hydrogels for synergistic antibacterial and antioxidant treatment to promote wound healing.
Collapse
Affiliation(s)
- Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jinxia Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Chunlin Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
| | - Yangang Sun
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Kaiyang Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
| | - Linjing Zhao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Ying Chen
- Department of Radiation Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Shanghai 200336, China
| | - Jian Wan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, China.
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
6
|
Li B, Chang G, Dang Q, Liu C, Song H, Chen A, Yang M, Shi L, Zhang B, Cha D. Preparation and characterization of antibacterial, antioxidant, and biocompatible p-coumaric acid modified quaternized chitosan nanoparticles. Int J Biol Macromol 2023:125087. [PMID: 37247710 DOI: 10.1016/j.ijbiomac.2023.125087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
To fabricate multifunctional nanoparticles (NPs) based on chitosan (CS) derivative, we first prepared quaternized CS (2-hydroxypropyltrimethyl ammonium chloride CS, HTCC) via a one-step approach, then synthesized p-coumaric acid (p-CA) modified HTCC (HTCC-CA) for the first time through amide reaction, and finally fabricated a series of NPs (HTCC-CA NPs) using HTCC-CAs with different substitution degrees and sodium tripolyphosphate (TPP) by ionic gelation. Newly-prepared HTCC and HTCC-CAs were characterized by FT-IR, 1H NMR, elemental analysis (EA), full-wavelength UV scanning, silver nitrate titration, and Folin-Ciocalteu methods. DLS and TEM results demonstrated that three selected HTCC-CA NPs had moderate size (< 350 nm), good dispersion (PDI < 0.4), and positive zeta potential (11-20 mV). The HTCC-CA NPs had high antibacterial activity against six bacterial strains, and the minimum inhibitory concentration (MIC) values were almost the same as the minimum bactericidal concentration (MBC) values (250-1000 μg/mL). Also, the HTCC-CA NPs had good antioxidation (radical scavenging ratio > 65 %) and low cytotoxicity (relative cell viability >80 %) to the tested cells. Totally, HTCC-CA NPs with high antibacterial activity, great antioxidation, and low cytotoxicity might serve as new biomedical materials for promoting skin wound healing.
Collapse
Affiliation(s)
- Boyuan Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Guozhu Chang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| | - Hao Song
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Aoqing Chen
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Meng Yang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Lufei Shi
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Bonian Zhang
- Qingdao Aorun Biotechnology Co., Ltd., Room 602, Century Mansion, 39 Donghaixi Road, Qingdao 266071, PR China
| | - Dongsu Cha
- The Graduate School of Biotechnology, Korea University, Seoul 136-701, South Korea
| |
Collapse
|
7
|
Allu I, Kumar Sahi A, Kumari P, Sakhile K, Sionkowska A, Gundu S. A Brief Review on Cerium Oxide (CeO 2NPs)-Based Scaffolds: Recent Advances in Wound Healing Applications. MICROMACHINES 2023; 14:865. [PMID: 37421098 DOI: 10.3390/mi14040865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 07/09/2023]
Abstract
The process of wound healing is complex and involves the interaction of multiple cells, each with a distinct role in the inflammatory, proliferative, and remodeling phases. Chronic, nonhealing wounds may result from reduced fibroblast proliferation, angiogenesis, and cellular immunity, often associated with diabetes, hypertension, vascular deficits, immunological inadequacies, and chronic renal disease. Various strategies and methodologies have been explored to develop nanomaterials for wound-healing treatment. Several nanoparticles such as gold, silver, cerium oxide and zinc possess antibacterial properties, stability, and a high surface area that promotes efficient wound healing. In this review article, we investigate the effectiveness of cerium oxide nanoparticles (CeO2NPs) in wound healing-particularly the effects of reducing inflammation, enhancing hemostasis and proliferation, and scavenging reactive oxygen species. The mechanism enables CeO2NPs to reduce inflammation, modulate the immunological system, and promote angiogenesis and tissue regeneration. In addition, we investigate the efficacy of cerium oxide-based scaffolds in various wound-healing applications for creating a favorable wound-healing environment. Cerium oxide nanoparticles (CeO2NPs) exhibit antioxidant, anti-inflammatory, and regenerative characteristics, enabling them to be ideal wound healing material. Investigations have shown that CeO2NPs can stimulate wound closure, tissue regeneration, and scar reduction. CeO2NPs may also reduce bacterial infections and boost wound-site immunity. However, additional study is needed to determine the safety and efficacy of CeO2NPs in wound healing and their long-term impacts on human health and the environment. The review reveals that CeO2NPs have promising wound-healing properties, but further study is needed to understand their mechanisms of action and ensure their safety and efficacy.
Collapse
Affiliation(s)
- Ishita Allu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, Telangana, India
| | - Ajay Kumar Sahi
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Jurija Gagarina 11, 87-100 Toruń, Poland
| | - Pooja Kumari
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Karunya Sakhile
- Department of Mechanical & Industrial Engineering, National University of Science and Technology, Muscat 2322, Oman
| | - Alina Sionkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Jurija Gagarina 11, 87-100 Toruń, Poland
- Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
| | - Shravanya Gundu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, Telangana, India
| |
Collapse
|
8
|
Karami F, Saber-Samandari S. Synthesis and characterization of a novel hydrogel based on carboxymethyl chitosan/sodium alginate with the ability to release simvastatin for chronic wound healing. Biomed Mater 2023; 18:025001. [PMID: 36603225 DOI: 10.1088/1748-605x/acb0a3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Since wound dressing has been considered a promising strategy to improve wound healing, recent attention has been focused on the development of modern wound dressings based on synthetic and bioactive polymers. In this study, we prepared a multifunctional wound dressing based on carboxymethyl chitosan (CMC)/sodium alginate (Alg) hydrogel containing a nanostructured lipid carrier (NLC) in which simvastatin (SIM) has been encapsulated. This dressing aimed to act as a barrier against pathogens, eliminate excess exudates, and accelerate wound healing. Among various fabricated composites of dressing, the hydrogel composite with a CMC/sodium Alg ratio of 1:2 had an average pore size of about 98.44 ± 26.9 μm and showed 707 ± 31.9% swelling and a 2116 ± 79.2 g m-2per day water vapor transfer rate (WVTR), demonstrating appropriate properties for absorbing exudates and maintaining wound moisture. The NLC with optimum composition and properties had a spherical shape and uniform particle size distribution (74.46 ± 7.9 nm). The prepared nanocomposite hydrogel displayed excellent antibacterial activity againstEscherichia coliandStaphylococcus aureusas well as high biocompatibility on L929 mouse fibroblast cells. It can release the loaded SIM drug slowly and over a prolonged period of time. The highest drug release occurred (80%) within 14 d. The results showed that this novel nanocomposite could be a promising candidate as a wound dressing for treating various chronic wounds in skin tissues.
Collapse
Affiliation(s)
- Fatemeh Karami
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Saber-Samandari
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
9
|
Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022; 23:267. [PMID: 36163568 PMCID: PMC9512992 DOI: 10.1208/s12249-022-02419-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering has emerged as an interesting field nowadays; it focuses on accelerating the auto-healing mechanism of tissues rather than organ transplantation. It involves implanting an In Vitro cultured initiative tissue or a scaffold loaded with tissue regenerating ingredients at the damaged area. Both techniques are based on the use of biodegradable, biocompatible polymers as scaffolding materials which are either derived from natural (e.g. alginates, celluloses, and zein) or synthetic sources (e.g. PLGA, PCL, and PLA). This review discusses in detail the recent applications of different biomaterials in tissue engineering highlighting the targeted tissues besides the in vitro and in vivo key findings. As well, smart biomaterials (e.g. chitosan) are fascinating candidates in the field as they are capable of elucidating a chemical or physical transformation as response to external stimuli (e.g. temperature, pH, magnetic or electric fields). Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent 4D printing approach which relies on the use of smart biomaterials to produce a dynamic scaffold resembling the natural tissue. Furthermore, the application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
10
|
Ma T, Zhai X, Jin M, Huang Y, Zhang M, Pan H, Zhao X, Du Y. Multifunctional wound dressing for highly efficient treatment of chronic diabetic wounds. VIEW 2022. [DOI: 10.1002/viw.20220045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Tengfei Ma
- Tianjin Key Lab for Rare Earth Materials and Applications Center for Rare Earth and Inorganic Functional Materials School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin China
| | - Xinyun Zhai
- Tianjin Key Lab for Rare Earth Materials and Applications Center for Rare Earth and Inorganic Functional Materials School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin China
| | - Mengdie Jin
- Tianjin Key Lab for Rare Earth Materials and Applications Center for Rare Earth and Inorganic Functional Materials School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin China
| | | | | | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration Institute of Biomedicine and Biotechnology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Xiaoli Zhao
- Research Center for Human Tissue and Organs Degeneration Institute of Biomedicine and Biotechnology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications Center for Rare Earth and Inorganic Functional Materials School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin China
| |
Collapse
|