1
|
Lewis EL, Reichenberger ER, Anton L, Gonzalez MV, Taylor DM, Porrett PM, Elovitz MA. Regulatory T cell adoptive transfer alters uterine immune populations, increasing a novel MHC-II low macrophage associated with healthy pregnancy. Front Immunol 2023; 14:1256453. [PMID: 37901247 PMCID: PMC10611509 DOI: 10.3389/fimmu.2023.1256453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Intrauterine fetal demise (IUFD) - fetal loss after 20 weeks - affects 6 pregnancies per 1,000 live births in the United States, and the majority are of unknown etiology. Maternal systemic regulatory T cell (Treg) deficits have been implicated in fetal loss, but whether mucosal immune cells at the maternal-fetal interface contribute to fetal loss is under-explored. We hypothesized that the immune cell composition and function of the uterine mucosa would contribute to the pathogenesis of IUFD. To investigate local immune mechanisms of IUFD, we used the CBA mouse strain, which naturally has mid-late gestation fetal loss. We performed a Treg adoptive transfer and interrogated both pregnancy outcomes and the impact of systemic maternal Tregs on mucosal immune populations at the maternal-fetal interface. Treg transfer prevented fetal loss and increased an MHC-IIlow population of uterine macrophages. Single-cell RNA-sequencing was utilized to precisely evaluate the impact of systemic Tregs on uterine myeloid populations. A population of C1q+, Trem2+, MHC-IIlow uterine macrophages were increased in Treg-recipient mice. The transcriptional signature of this novel uterine macrophage subtype is enriched in multiple studies of human healthy decidual macrophages, suggesting a conserved role for these macrophages in preventing fetal loss.
Collapse
Affiliation(s)
- Emma L. Lewis
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erin R. Reichenberger
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lauren Anton
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael V. Gonzalez
- Center for Cytokine Storm Treatment & Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Paige M. Porrett
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Michal A. Elovitz
- Women’s Biomedical Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Balduit A, Vidergar R, Zacchi P, Mangogna A, Agostinis C, Grandolfo M, Bottin C, Salton F, Confalonieri P, Rocca A, Zanconati F, Confalonieri M, Kishore U, Ghebrehiwet B, Bulla R. Complement protein C1q stimulates hyaluronic acid degradation via gC1qR/HABP1/p32 in malignant pleural mesothelioma. Front Immunol 2023; 14:1151194. [PMID: 37334363 PMCID: PMC10275365 DOI: 10.3389/fimmu.2023.1151194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Complement component C1q can act as a pro-tumorigenic factor in the tumor microenvironment (TME). The TME in malignant pleural mesothelioma (MPM) is rich in C1q and hyaluronic acid (HA), whose interaction enhances adhesion, migration and proliferation of malignant cells. HA-bound C1q is also capable of modulating HA synthesis. Thus, we investigated whether HA-C1q interaction would affect HA degradation, analyzing the main degradation enzymes, hyaluronidase (HYAL)1 and HYAL2, and a C1q receptor candidate. We first proceeded with the characterization of HYALs in MPM cells, especially HYAL2, since bioinformatics survival analysis revealed that higher HYAL2 mRNA levels have an unfavorable prognostic index in MPM patients. Interestingly, Real-Time quantitative PCR, flow cytometry and Western blot highlighted an upregulation of HYAL2 after seeding of primary MPM cells onto HA-bound C1q. In an attempt to unveil the receptors potentially involved in HA-C1q signaling, a striking co-localization between HYAL2 and globular C1q receptor/HABP1/p32 (gC1qR) was found by immunofluorescence, surface biotinylation and proximity ligation assays. RNA interference experiments revealed a potentially regulatory function exerted by gC1qR on HYAL2 expression, since C1QBP (gene for gC1qR) silencing unexpectedly caused HYAL2 downregulation. In addition, the functional blockage of gC1qR by a specific antibody hindered HA-C1q signaling and prevented HYAL2 upregulation. Thus, C1q-HA interplay is responsible for enhanced HYAL2 expression, suggesting an increased rate of HA catabolism and the release of pro-inflammatory and pro-tumorigenic HA fragments in the MPM TME. Our data support the notion of an overall tumor-promoting property of C1q. Moreover, the overlapping localization and physical interaction between HYAL2 and gC1qR suggests a potential regulatory effect of gC1qR within a putative HA-C1q macromolecular complex.
Collapse
Affiliation(s)
- Andrea Balduit
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Romana Vidergar
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Micaela Grandolfo
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Francesco Salton
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Paola Confalonieri
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Andrea Rocca
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
- Struttura Complessa di Anatomia ed Istologia Patologica, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
3
|
Agostinis C, Zito G, Toffoli M, Peterlunger I, Simoni L, Balduit A, Curtolo E, Mangogna A, Belmonte B, Vacca D, Romano F, Stampalija T, Salviato T, Defendi F, Di Simone N, Kishore U, Ricci G, Bulla R. A longitudinal study of C1q and anti-C1q autoantibodies in homologous and heterologous pregnancies for predicting pre-eclampsia. Front Immunol 2022; 13:1037191. [DOI: 10.3389/fimmu.2022.1037191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
C1q, the recognition molecule of the classical pathway of the complement system, plays a central role in pregnancy. Lack of C1q is characterized by poor trophoblast invasion and pregnancy failure. C1q can be the target of an antibody response: anti‐C1q autoantibodies (anti-C1q) are present in several infectious and autoimmune diseases. The presence of these autoantibodies has been detected also in 2-8% of the general population. Recent evidence indicates that women who undergo assisted reproductive technology (ART) have an increased risk of developing pre-eclampsia (PE), particularly oocyte donation (OD) pregnancies. The aim of this study was to characterize the levels of C1q and anti-C1q in PE gestations, in healthy spontaneous, homologous and heterologous ART pregnancies. Serum of the following four groups of women, who were followed throughout two or three trimesters, were collected: PE, patients diagnosed with PE; OD, oocyte donation recipients; HOM, homologous ART women; Sp, spontaneous physiological pregnancy. Our results indicate that PE patients have lower levels of anti-C1q. In ART pregnant women, the trend of C1q and anti-C1q levels were similar to PE patients, even though these women did not develop PE-like symptoms during pregnancy. This finding suggests an immunological dysfunction at the foetal-maternal interface in ART pregnancies, a hypothesis confirmed by the observation of C1q deposition in placentae derived from OD, comparable to PE. Since significantly lower levels of anti-C1q were detected in PE compared to healthy control sera, we hypothesize the possible binding on placental syncytiotrophoblast microvesicles (STBM), which are increased in the circulation of PE mothers. Furthermore, the characterization of the binding-epitope of anti-C1q revealed that “physiological” autoantibodies were mainly directed against C1q globular domain. We concluded that anti-C1q could have a physiological role in pregnancy: during the healthy spontaneous pregnancy the raised levels of these autoantibodies can be important for the clearance of STBM. In PE and in pathological pregnancies (but also in OD pregnancies), the increase in syncytiotrophoblast apoptosis and consequent increase of the circulating STMB levels lead to a consumption of C1q and anti-C1q.
Collapse
|
4
|
Schulz K, Trendelenburg M. C1q as a target molecule to treat human disease: What do mouse studies teach us? Front Immunol 2022; 13:958273. [PMID: 35990646 PMCID: PMC9385197 DOI: 10.3389/fimmu.2022.958273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The complement system is a field of growing interest for pharmacological intervention. Complement protein C1q, the pattern recognition molecule at the start of the classical pathway of the complement cascade, is a versatile molecule with additional non-canonical actions affecting numerous cellular processes. Based on observations made in patients with hereditary C1q deficiency, C1q is protective against systemic autoimmunity and bacterial infections. Accordingly, C1q deficient mice reproduce this phenotype with susceptibility to autoimmunity and infections. At the same time, beneficial effects of C1q deficiency on disease entities such as neurodegenerative diseases have also been described in murine disease models. This systematic review provides an overview of all currently available literature on the C1q knockout mouse in disease models to identify potential target diseases for treatment strategies focusing on C1q, and discusses potential side-effects when depleting and/or inhibiting C1q.
Collapse
Affiliation(s)
- Kristina Schulz
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- *Correspondence: Kristina Schulz,
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
5
|
Variation of Complement Protein Levels in Maternal Plasma and Umbilical Cord Blood during Normal Pregnancy: An Observational Study. J Clin Med 2022; 11:jcm11133611. [PMID: 35806894 PMCID: PMC9267899 DOI: 10.3390/jcm11133611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The complement system constitutes a crucial part of the innate immunity, mediating opsonization, lysis, inflammation, and elimination of potential pathogens. In general, there is an increased activity of the complement system during pregnancy, which is essential for maintaining the host’s defense and fetal survival. Unbalanced or excessive activation of the complement system in the placenta is associated with pregnancy complications, such as miscarriage, preeclampsia, and premature birth. Nonetheless, the actual clinical value of monitoring the activation of the complement system during pregnancy remains to be investigated. Unfortunately, normal reference values specifically for pregnant women are missing, and for umbilical cord blood (UCB), data on complement protein levels are scarce. Herein, complement protein analyses (C1q, C3, C4, C3d levels, and C3d/C3 ratio) were performed in plasma samples from 100 healthy, non-medicated and non-smoking pregnant women, collected during different trimesters and at the time of delivery. In addition, UCB was collected at all deliveries. Maternal plasma C1q and C3d/C3 ratio showed the highest mean values during the first trimester, whereas C3, C4, and C3d had rising values until delivery. We observed low levels of C1q and C4 as well as increased C3d and C3d/C3 ratio, particularly during the first trimester, as a sign of complement activation in some women. However, the reference limits of complement analyses applied for the general population appeared appropriate for the majority of the samples. As expected, the mean complement concentrations in UCB were much lower than in maternal plasma, due to the immature complement system in neonates.
Collapse
|
6
|
Belmonte B, Mangogna A, Gulino A, Cancila V, Morello G, Agostinis C, Bulla R, Ricci G, Fraggetta F, Botto M, Garred P, Tedesco F. Distinct Roles of Classical and Lectin Pathways of Complement in Preeclamptic Placentae. Front Immunol 2022; 13:882298. [PMID: 35711467 PMCID: PMC9197446 DOI: 10.3389/fimmu.2022.882298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022] Open
Abstract
Pre-eclampsia is a pregnancy complication characterized by defective vascular remodeling in maternal decidua responsible for reduced blood flow leading to functional and structural alterations in the placenta. We have investigated the contribution of the complement system to decidual vascular changes and showed that trophoblasts surrounding unremodeled vessels prevalent in preeclamptic decidua fail to express C1q that are clearly detected in cells around remodeled vessels predominant in control placenta. The critical role of C1q is supported by the finding that decidual trophoblasts of female C1qa-/- pregnant mice mated to C1qa+/+ male mice surrounding remodeled vessels express C1q of paternal origin. Unlike C1qa-/- pregnant mice, heterozygous C1qa+/- and wild type pregnant mice share a high percentage of remodeled vessels. C1q was also found in decidual vessels and stroma of normal placentae and the staining was stronger in preeclamptic placentae. Failure to detect placental deposition of C1r and C1s associated with C1q rules out complement activation through the classical pathway. Conversely, the intense staining of decidual endothelial cells and villous trophoblast for ficolin-3, MASP-1 and MASP-2 supports the activation of the lectin pathway that proceeds with the cleavage of C4 and C3 and the assembly of the terminal complex. These data extend to humans our previous findings of complement activation through the lectin pathway in an animal model of pre-eclampsia and provide evidence for an important contribution of C1q in decidual vascular remodeling.
Collapse
Affiliation(s)
- Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Pathology Unit, Azienda Sanitaria Provinciale (ASP) Catania, “Gravina” Hospital, Caltagirone, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandro Gulino
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Gaia Morello
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Filippo Fraggetta
- Pathology Unit, Azienda Sanitaria Provinciale (ASP) Catania, “Gravina” Hospital, Caltagirone, Italy
| | - Marina Botto
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
- Imperial Lupus Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Francesco Tedesco
- Istituto Auxologico Italiano, Laboratory of Immuno-Rheumatology, IRCCS, Milan, Italy
- *Correspondence: Francesco Tedesco,
| |
Collapse
|
7
|
Dijkstra DJ, Lokki AI, Gierman LM, Borggreven NV, van der Keur C, Eikmans M, Gelderman KA, Laivuori H, Iversen AC, van der Hoorn MLP, Trouw LA. Circulating Levels of Anti-C1q and Anti-Factor H Autoantibodies and Their Targets in Normal Pregnancy and Preeclampsia. Front Immunol 2022; 13:842451. [PMID: 35432365 PMCID: PMC9009242 DOI: 10.3389/fimmu.2022.842451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Preeclampsia (PE) generally manifests in the second half of pregnancy with hypertension and proteinuria. The understanding of the origin and mechanism behind PE is incomplete, although there is clearly an immune component to this disorder. The placenta constitutes a complicated immune interface between fetal and maternal cells, where regulation and tolerance are key. Stress factors from placental dysfunction in PE are released to the maternal circulation evoking the maternal response. Several complement factors play a role within this intricate landscape, including C1q in vascular remodeling and Factor H (FH) as the key regulator of alternative pathway complement activation. We hypothesize that decreased levels of C1q or FH, or disturbance of their function by autoantibodies, may be associated with PE. Autoantibodies against C1q and FH and the concentrations of C1q and FH were measured by ELISA in maternal sera from women with preeclamptic and normal pregnancies. Samples originated from cohorts collected in the Netherlands (n=63 PE; n=174 control pregnancies, n=51 nonpregnant), Finland (n=181 PE; n=63 control pregnancies) and Norway (n=59 PE; n=27 control pregnancies). Serum C1q and FH concentrations were higher in control pregnancy than in nonpregnant women. No significant differences were observed for serum C1q between preeclamptic and control pregnancy in any of the three cohorts. Serum levels of FH were lower in preeclamptic pregnancies compared to control pregnancies in two of the cohorts, this effect was driven by the early onset PE cases. Neither anti-C1q autoantibodies nor anti-FH autoantibodies levels differed between women with PE and normal pregnancies. In conclusion, levels of anti-C1q and anti-FH autoantibodies are not increased in PE. C1q and FH are increased in pregnancy, but importantly, a decrease in FH concentration is associated with PE.
Collapse
Affiliation(s)
- Douwe Jan Dijkstra
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Douwe Jan Dijkstra, ; Leendert Adrianus Trouw,
| | - A. Inkeri Lokki
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lobke Marijn Gierman
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Carin van der Keur
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Kyra Andrea Gelderman
- Department of Immunopathology and Haemostasis, Sanquin Diagnostic Services, Amsterdam, Netherlands
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent, and Maternal Health Research, Tampere, Finland
| | | | - Ann-Charlotte Iversen
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Leendert Adrianus Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Douwe Jan Dijkstra, ; Leendert Adrianus Trouw,
| |
Collapse
|
8
|
Feng P, Yang G, Zhang W, Zhang L, Wu J, Yang L. Early pregnancy regulates expression of complement components in ovine liver. Anim Sci J 2021; 92:e13660. [PMID: 34786795 DOI: 10.1111/asj.13660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023]
Abstract
Complement pathways participate in the regulation of innate immune system, and complement activation is inhibited in normal pregnancy. The liver plays key roles in the modulation of immunity and tolerance, but it is unclear that early pregnancy induces the changes in expression of complement components in the ovine maternal liver. The aim of the present study was to explore the expression of complement components in the liver using quantitative real-time polymerase chain reaction (PCR), Western blot, and immunohistochemistry. Maternal livers were collected on Day 16 of the estrous cycle and Days 13, 16, and 25 of gestation. The results indicated that early pregnancy suppressed the expression of C1q, C1r, C1s, C2, C4a, C5b, and C9 in the maternal liver, but C3 expression was increased. In addition, C3 protein was located in the endothelial cells of the proper hepatic arteries and portal veins and hepatocytes. In summary, the downregulaltion of C1q, C1r, C1s, C2, C4a, C5b, and C9 may be involved in the suppression of complement activation, and upregulation of C3 is related to the modulation of maternal immune tolerance in ovine liver.
Collapse
Affiliation(s)
- Pengfei Feng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Gengxin Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Weifeng Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Jiaxuan Wu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
9
|
Zhang L, Zhang Q, Wang H, Feng P, Yang G, Yang L. Effects of early pregnancy on the complement system in the ovine thymus. Vet Res Commun 2021; 46:137-145. [PMID: 34559379 DOI: 10.1007/s11259-021-09837-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
The complement system is crucial for the innate immune system, and complement activation is related to abnormal pregnancy in mice and humans. It is hypothesized that the complement system participates in maternal thymic immune regulation during early pregnancy in sheep. In this study, maternal thymuses were sampled on day 16 of the estrous cycle, and days 13, 16 and 25 of gestation in sheep. Quantitative real-time PCR, Western blot and immunohistochemistry analyses were used to analyze the expression of the complement components C1q, C1r, C1s, C2, C3, C4a, C5b and C9 in the maternal thymus. The results revealed that the mRNA and protein expression of C1r, C1s, C2, C3 and C4a was inhibited by early pregnancy, and the pregnancy recognition signal induced upregulation of C1q, C5b and C9 expression at day 16 of gestation. Furthermore, C3 protein was mostly located in epithelial reticular cells and thymic corpuscles, which may be involved in immune regulation. In summary, early pregnancy inhibits the complement system in the maternal thymus, which may be essential for the maternal immune regulation and successful pregnancy in sheep.
Collapse
Affiliation(s)
- Leying Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Qiongao Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Haichao Wang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Pengfei Feng
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Gengxin Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Ling Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China.
| |
Collapse
|
10
|
Waker CA, Kaufman MR, Brown TL. Current State of Preeclampsia Mouse Models: Approaches, Relevance, and Standardization. Front Physiol 2021; 12:681632. [PMID: 34276401 PMCID: PMC8284253 DOI: 10.3389/fphys.2021.681632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a multisystemic, pregnancy-specific disorder and a leading cause of maternal and fetal death. PE is also associated with an increased risk for chronic morbidities later in life for mother and offspring. Abnormal placentation or placental function has been well-established as central to the genesis of PE; yet much remains to be determined about the factors involved in the development of this condition. Despite decades of investigation and many clinical trials, the only definitive treatment is parturition. To better understand the condition and identify potential targets preclinically, many approaches to simulate PE in mice have been developed and include mixed mouse strain crosses, genetic overexpression and knockout, exogenous agent administration, surgical manipulation, systemic adenoviral infection, and trophoblast-specific gene transfer. These models have been useful to investigate how biological perturbations identified in human PE are involved in the generation of PE-like symptoms and have improved the understanding of the molecular mechanisms underpinning the human condition. However, these approaches were characterized by a wide variety of physiological endpoints, which can make it difficult to compare effects across models and many of these approaches have aspects that lack physiological relevance to this human disorder and may interfere with therapeutic development. This report provides a comprehensive review of mouse models that exhibit PE-like symptoms and a proposed standardization of physiological characteristics for analysis in murine models of PE.
Collapse
Affiliation(s)
- Christopher A Waker
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R Kaufman
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
11
|
A comparative analysis of the intrauterine transcriptome in fertile and subfertile mares using cytobrush sampling. BMC Genomics 2021; 22:377. [PMID: 34022808 PMCID: PMC8141133 DOI: 10.1186/s12864-021-07701-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background Subfertility is a major problem in modern horse breeding. Especially, mares without clinical signs of reproductive diseases, without known uterine pathogens and no evidence of inflammation but not becoming pregnant after several breeding attempts are challenging for veterinarians. To obtain new insights into the cause of these fertility problems and aiming at improving diagnosis of subfertile mares, a comparative analysis of the intrauterine transcriptome in subfertile and fertile mares was performed. Uterine cytobrush samples were collected during estrus from 57 mares without clinical signs of uterine diseases. RNA was extracted from the cytobrush samples and samples from 11 selected subfertile and 11 fertile mares were used for Illumina RNA-sequencing. Results The cytobrush sampling was a suitable technique to isolate enough RNA of high quality for transcriptome analysis. Comparing subfertile and fertile mares, 114 differentially expressed genes (FDR = 10%) were identified. Metascape enrichment analysis revealed that genes with lower mRNA levels in subfertile mares were related to ‘extracellular matrix (ECM)’, ‘ECM-receptor interaction’, ‘focal adhesion’, ‘immune response’ and ‘cytosolic calcium ion concentration’, while DEGs with higher levels in subfertile mares were enriched for ‘monocarboxyl acid transmembrane transport activity’ and ‘protein targeting’. Conclusion Our study revealed significant differences in the uterine transcriptome between fertile and subfertile mares and provides leads for potential uterine molecular biomarkers of subfertility in the mare. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07701-3.
Collapse
|
12
|
Van Heertum K, Lam L, Richardson B, Cartwright MJ, Mesiano SA, Cameron MJ, Weinerman R. Blastocyst Vitrification and Trophectoderm Biopsy Cumulatively Alter Embryonic Gene Expression in a Mouse Model. Reprod Sci 2021; 28:2961-2971. [PMID: 33826099 DOI: 10.1007/s43032-021-00560-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/25/2021] [Indexed: 11/25/2022]
Abstract
Although embryo vitrification has been used extensively in human assisted reproductive technology (ART) and animal models, epidemiologic evidence and randomized controlled trials suggest differences in pregnancy/perinatal outcomes (birthweight, risk for preterm birth, and pre-eclampsia) between babies born from fresh versus frozen embryo transfers. To address the uncertainty surrounding the effects of laboratory manipulations of embryos on clinical outcomes, we subjected mouse blastocysts to increasing levels of manipulation for transcriptome analysis. Blastocysts were randomly divided into four groups: no manipulation (control), single vitrification/thaw (1 vit), double vitrification/thaw (2 vit), and single vitrification/thaw plus trophectoderm biopsy and again vitrified/thawed (2 vit + bx). Three sets of 15 blastocysts in each group were pooled for RNA sequencing, and differentially expressed genes (DEGs) and pathways were determined by statistical analysis. Blastocysts were also stained for ZO-1 and F-actin to assess cytoskeletal integrity. Freeze/thaw and biopsy manipulation affected multiple biological pathways. The most significant differences were detected in genes related to innate immunity, apoptosis, and mitochondrial function, with the magnitude of change proportional to the extent to manipulation. Significant disruptions were also seen in cytoskeletal staining, with greater disruptions seen with greater of manipulation. Our data suggests that embryo vitrification and biopsy affect embryo gene transcription, with several identified DEGs that may have plausible mechanisms for the clinical outcomes seen in human offspring following ART. Further study is required to determine whether these alterations in gene expression are associated with clinical differences seen in children born from fresh or frozen embryo transfer.
Collapse
Affiliation(s)
- Kristin Van Heertum
- University Hospitals Fertility Center/Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lisa Lam
- CCRM New York Fertility, New York, NY, 10019, USA
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michael J Cartwright
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sam A Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rachel Weinerman
- University Hospitals Fertility Center/Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
Mayoral Andrade G, Vásquez Martínez G, Pérez-Campos Mayoral L, Hernández-Huerta MT, Zenteno E, Pérez-Campos Mayoral E, Martínez Cruz M, Martínez Cruz R, Matias-Cervantes CA, Meraz Cruz N, Romero Díaz C, Cruz-Parada E, Pérez-Campos E. Molecules and Prostaglandins Related to Embryo Tolerance. Front Immunol 2020; 11:555414. [PMID: 33329514 PMCID: PMC7710691 DOI: 10.3389/fimmu.2020.555414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
It is generally understood that the entry of semen into the female reproductive tract provokes molecular and cellular changes facilitating conception and pregnancy. We show a broader picture of the participation of prostaglandins in the fertilization, implantation and maintenance of the embryo. A large number of cells and molecules are related to signaling networks, which regulate tolerance to implantation and maintenance of the embryo and fetus. In this work, many of those cells and molecules are analyzed. We focus on platelets, polymorphonuclear leukocytes, and group 2 innate lymphoid cells involved in embryo tolerance in order to have a wider view of how prostaglandins participate. The combination of platelets and neutrophil extracellular traps (Nets), uterine innate lymphoid cells (uILC), Treg cells, NK cells, and sex hormones have an important function in immunological tolerance. In both animals and humans, the functions of these cells can be regulated by prostaglandins and soluble factors in seminal plasma to achieve an immunological balance, which maintains fetal-maternal tolerance. Prostaglandins, such as PGI2 and PGE2, play an important role in the suppression of the previously mentioned cells. PGI2 inhibits platelet aggregation, in addition to IL-5 and IL-13 expression in ILC2, and PGE2 inhibits some neutrophil functions, such as chemotaxis and migration processes, leukotriene B4 (LTB4) biosynthesis, ROS production, and the formation of extracellular traps, which could help prevent trophoblast injury and fetal loss. The implications are related to fertility in female when seminal fluid is deposited in the vagina or uterus.
Collapse
Affiliation(s)
- Gabriel Mayoral Andrade
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Laura Pérez-Campos Mayoral
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Edgar Zenteno
- Department of Biochemistry, School of Medicine, UNAM, Mexico City, México
| | - Eduardo Pérez-Campos Mayoral
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Ruth Martínez Cruz
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Noemi Meraz Cruz
- School of Medicine, Branch at National Institute of Genomic Medicine, Mexico City, Mexico
| | - Carlos Romero Díaz
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | - Eli Cruz-Parada
- Biochemistry and Immunology Unit, National Technological of Mexico/ITOaxaca, Oaxaca, Mexico
| | - Eduardo Pérez-Campos
- Biochemistry and Immunology Unit, National Technological of Mexico/ITOaxaca, Oaxaca, Mexico
| |
Collapse
|
14
|
Cornish EF, Filipovic I, Åsenius F, Williams DJ, McDonnell T. Innate Immune Responses to Acute Viral Infection During Pregnancy. Front Immunol 2020; 11:572567. [PMID: 33101294 PMCID: PMC7556209 DOI: 10.3389/fimmu.2020.572567] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Immunological adaptations in pregnancy allow maternal tolerance of the semi-allogeneic fetus but also increase maternal susceptibility to infection. At implantation, the endometrial stroma, glands, arteries and immune cells undergo anatomical and functional transformation to create the decidua, the specialized secretory endometrium of pregnancy. The maternal decidua and the invading fetal trophoblast constitute a dynamic junction that facilitates a complex immunological dialogue between the two. The decidual and peripheral immune systems together assume a pivotal role in regulating the critical balance between tolerance and defense against infection. Throughout pregnancy, this equilibrium is repeatedly subjected to microbial challenge. Acute viral infection in pregnancy is associated with a wide spectrum of adverse consequences for both mother and fetus. Vertical transmission from mother to fetus can cause developmental anomalies, growth restriction, preterm birth and stillbirth, while the mother is predisposed to heightened morbidity and maternal death. A rapid, effective response to invasive pathogens is therefore essential in order to avoid overwhelming maternal infection and consequent fetal compromise. This sentinel response is mediated by the innate immune system: a heritable, highly evolutionarily conserved system comprising physical barriers, antimicrobial peptides (AMP) and a variety of immune cells—principally neutrophils, macrophages, dendritic cells, and natural killer cells—which express pattern-receptors that detect invariant molecular signatures unique to pathogenic micro-organisms. Recognition of these signatures during acute infection triggers signaling cascades that enhance antimicrobial properties such as phagocytosis, secretion of pro-inflammatory cytokines and activation of the complement system. As well as coordinating the initial immune response, macrophages and dendritic cells present microbial antigens to lymphocytes, initiating and influencing the development of specific, long-lasting adaptive immunity. Despite extensive progress in unraveling the immunological adaptations of pregnancy, pregnant women remain particularly susceptible to certain acute viral infections and continue to experience mortality rates equivalent to those observed in pandemics several decades ago. Here, we focus specifically on the pregnancy-induced vulnerabilities in innate immunity that contribute to the disproportionately high maternal mortality observed in the following acute viral infections: Lassa fever, Ebola virus disease (EVD), dengue fever, hepatitis E, influenza, and novel coronavirus infections.
Collapse
Affiliation(s)
- Emily F Cornish
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Fredrika Åsenius
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - David J Williams
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Thomas McDonnell
- Department of Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
15
|
Hansen VL, Miller RD. Evidence for regulation of the complement system during pregnancy being ancient and conserved in mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103562. [PMID: 31785265 PMCID: PMC6937380 DOI: 10.1016/j.dci.2019.103562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Here we demonstrate that regulation of the Complement (C') components of the immune system is an ancient and conserved feature of mammalian pregnancy. Transcript levels were reduced for complement components C3 and C4 throughout pregnancy in a marsupial, Monodelphis domestica. Downstream C' component transcripts were significantly less abundant relative to non-pregnant controls at the start of pregnancy but increased during late pregnancy, in some cases peaking close to parturition. These results are consistent with observations in human pregnancy that deposition of C5 through C9 on fetal membranes is associated with labor and parturition. Complement regulators CD46 and CD59 are present at the fetomaternal interface during M. domestica pregnancy as well, implying regulation of C' effector mechanisms is necessary for maintenance of normal marsupial pregnancy. Collectively these results support regulating the complement system may have contributed to the transition from oviparity to viviparity in mammals over 165 million years ago.
Collapse
Affiliation(s)
- Victoria L Hansen
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
16
|
He Y, Xu B, Song D, Wang Y, Yu F, Chen Q, Zhao M. Normal range of complement components during pregnancy: A prospective study. Am J Reprod Immunol 2020; 83:e13202. [PMID: 31646704 PMCID: PMC7027513 DOI: 10.1111/aji.13202] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
PROBLEM The complement system plays a key role in normal placentation, and delicate regulation of complement system activation is critical for successful pregnancy. Therefore, establishing a normal range of complement components during pregnancy is important for clinical evaluation and research. METHODS We performed a prospective study to investigate the normal range of complement components in circulation during different stages of pregnancy. Plasma concentrations of complement factor B (CFB), C1q, complement factor H (CFH), C3, C3c, and C4 were measured using an immunoturbidimetric assay; mannan-binding lectin (MBL), C3a, C5a, and soluble C5b-9 (sC5b-9) levels at different time points of pregnancy were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS A total of 733 plasma samples were collected from 362 women with a normal pregnancy and 65 samples from non-pregnant women. In the first trimester of pregnancy, the levels of CFB, CFH, MBL, C3c, C4, and C3a were 414.5 ± 85.9 mg/L (95% CI for mean: 402.4-426.6 mg/L), 381.0 ± 89.0 mg/L (95% CI for mean: 368.5-393.6 mg/L), 4274.5 ± 2752 ng/mL (95% CI for mean: 3881.1-4656.4 ng/mL), 1346.9 ± 419.8 mg/L (95% CI for mean: 1287.7-1406.0 mg/L), 357.4 ± 101.8 mg/L (95% CI for mean: 343.0-371.7 mg/L), and 182.5 ± 150.0 ng/mL (95% CI for mean: 186.9-229.1 ng/mL), respectively. The levels of C3 and C4 increased gradually throughout pregnancy. The levels of C1q, C5a, and sC5b-9 in the first and second trimesters were nearly the same as those in non-pregnant women. CONCLUSION The results of this study show that pregnancy itself may influence the plasma levels of complement system components.
Collapse
Affiliation(s)
- Ying‐dong He
- Department of Obstetrics and GynecologyPeking University First HospitalBeijingChina
| | - Bing‐ning Xu
- Department of Obstetrics and GynecologyPeking University First HospitalBeijingChina
| | - Di Song
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaKey Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of Education of ChinaBeijingChina
- Department of MedicineRenal DivisionPeking University First HospitalPeking University Institute of NephrologyBeijingChina
| | - Ya‐qin Wang
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaKey Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of Education of ChinaBeijingChina
- Department of MedicineRenal DivisionPeking University First HospitalPeking University Institute of NephrologyBeijingChina
| | - Feng Yu
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaKey Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of Education of ChinaBeijingChina
- Department of MedicineRenal DivisionPeking University First HospitalPeking University Institute of NephrologyBeijingChina
| | - Qian Chen
- Department of Obstetrics and GynecologyPeking University First HospitalBeijingChina
| | - Ming‐hui Zhao
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaKey Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of Education of ChinaBeijingChina
- Department of MedicineRenal DivisionPeking University First HospitalPeking University Institute of NephrologyBeijingChina
- Peking‐Tsinghua Center for Life SciencesBeijingChina
| |
Collapse
|
17
|
Jia K, Ma L, Wu S, Yang W. Serum Levels of Complement Factors C1q, Bb, and H in Normal Pregnancy and Severe Pre-Eclampsia. Med Sci Monit 2019; 25:7087-7093. [PMID: 31541546 PMCID: PMC6767947 DOI: 10.12659/msm.915777] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background This study aimed to determine the diagnostic role of serum levels of complement C1q, Bb, and H in nonpregnant women, women with normal pregnancy, and women with severe pre-eclampsia. Material/Methods Healthy nonpregnant women (n=30), women with early, middle, and late normal pregnancy (n=30, respectively), and women with severe pre-eclampsia (n=73) were studied. The pre-eclampsia study group included early-onset cases (n=43) and late-onset cases (n=30). Serum levels of Bb were determined by enzyme-linked immunosorbent assay (ELISA), and C1q and H were tested by a turbidimetric immunoassay method. Results In the pre-eclampsia study group, compared with women with normal pregnancy, serum levels of C1q remained stable throughout pregnancy, and Bb levels declined from mid-pregnancy (p=0.250). Serum levels of factor H increased in the middle and late stages of pregnancy, and C1q and H were lower in early-onset severe pre-eclampsia (p<0.001, p=0.009, respectively) and late-onset severe pre-eclampsia (p<0.001, p=0.031, respectively) compared with the early-onset control and late-onset control groups. Serum levels of Bb increased in early-onset severe pre-eclampsia (p=0.001) and late-onset severe pre-eclampsia (p=0.003) compared with early-onset control and late-onset control groups. The area under the receiver operator curve (ROC) for serum C1q, Bb, and H for the diagnosis of early-onset severe pre-eclampsia were 0.814 (95% CI, 0.712–0.917), 0.743 (95% CI, 0.638–0.859), and 0.681(95% CI, 0.556–0.806), and late-onset severe pre-eclampsia were 0.805 (95% CI, 0.694–0.913), 0.796 (95% CI, 0.680–0.911), and 0.662 (95% CI, 0.524–0.800). Conclusions The classical and alternative pathways of complement were activated in patients with severe pre-eclampsia. Serum levels of C1q, Bb, and H should be studied further as potential diagnostic markers for severe pre-eclampsia.
Collapse
Affiliation(s)
- Keke Jia
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China (mainland)
| | - Lijuan Ma
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China (mainland)
| | - Siyi Wu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China (mainland)
| | - Wang Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (mainland)
| |
Collapse
|
18
|
Mangogna A, Agostinis C, Ricci G, Romano F, Bulla R. Overview of procalcitonin in pregnancy and in pre-eclampsia. Clin Exp Immunol 2019; 198:37-46. [PMID: 31081935 DOI: 10.1111/cei.13311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Procalcitonin (PCT), a precursor for calcitonin, is a prohormone involved in the inflammatory processes, which has been poorly studied in the context of pregnancy. During severe inflammation, PCT derives from almost all cell types, including monocytes and parenchymal tissues, making it a good predictive and diagnostic marker of an inflammatory state with rapidly increased serum levels in inflammation or sepsis. In normal pregnancy, PCT is basally expressed at very low level by decidual cells, even if decidual macrophages, which in normal pregnancy are skewed to M2 macrophages, are resistant to lipopolysaccharide (LPS)-induced production of PCT. As PCT increase is associated with an inflammatory state, several research groups investigated whether PCT can be considered a marker of pre-eclampsia, a pregnancy disease characterized by systemic inflammation. The first aim of this review is to summarize what is already known about the tissues synthesizing PCT, about the stimuli that cause the increase of circulating PCT levels and how PCT acts as a proinflammatory stimulus by itself. Secondly, we will describe the role of this prohormone in normal pregnancy and in pregnancies complicated by pre-eclampsia, highlighting the involvement of the decidual macrophages and the proinflammatory cytokine tumor necrosis factor-α in the modulation of PCT expression in the decidual microenvironment.
Collapse
Affiliation(s)
- A Mangogna
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - C Agostinis
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - G Ricci
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy.,Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - F Romano
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - R Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
19
|
Kumar V. The complement system, toll-like receptors and inflammasomes in host defense: three musketeers’ one target. Int Rev Immunol 2019; 38:131-156. [PMID: 31066339 DOI: 10.1080/08830185.2019.1609962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vijay Kumar
- Children’s Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Mangogna A, Agostinis C, Bonazza D, Belmonte B, Zacchi P, Zito G, Romano A, Zanconati F, Ricci G, Kishore U, Bulla R. Is the Complement Protein C1q a Pro- or Anti-tumorigenic Factor? Bioinformatics Analysis Involving Human Carcinomas. Front Immunol 2019; 10:865. [PMID: 31130944 PMCID: PMC6509152 DOI: 10.3389/fimmu.2019.00865] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/04/2019] [Indexed: 01/04/2023] Open
Abstract
C1q is the first subcomponent of the classical pathway of the complement system and belongs to the C1q/Tumor Necrosis Factor superfamily. C1q can perform a diverse range of immune and non-immune functions in a complement-dependent as well as -independent manner. Being a pattern recognition molecule of the innate immunity, C1q can recognize a number of self, non-self and altered-self ligands and bring about effector mechanisms designed to clear pathogens via opsonisation and inflammatory response. C1q is locally synthesized by macrophages and dendritic cells, and thus, can get involved in a range of biological processes, such as angiogenesis and tissue remodeling, immune modulation, and immunologic tolerance. The notion of C1q involvement in the pathogenesis of cancer is still evolving. C1q appears to have a dual role in cancer: tumor promoting as well as tumor-protective, depending on the context of the disease. In the current study, we performed a bioinformatics analysis to investigate whether C1q can serve as a potential prognostic marker for human carcinoma. We used the Oncomine database and the survival analysis platforms Kaplan-Meier plotter. Our results showed that high levels of C1q have a favorable prognostic index in basal-like breast cancer for disease-free survival, and in HER2-positive breast cancer for overall survival, while it showed a pro-tumorigenic role of C1q in lung adenocarcinoma, and in clear cell renal cell carcinoma. This in silico study, if validated via a retrospective study, can be a step forward in establishing C1q as a new tool as a prognostic biomarker for various carcinoma.
Collapse
Affiliation(s)
| | - Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gabriella Zito
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Andrea Romano
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy.,Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
21
|
Bastu E, Demiral I, Gunel T, Ulgen E, Gumusoglu E, Hosseini MK, Sezerman U, Buyru F, Yeh J. Potential Marker Pathways in the Endometrium That May Cause Recurrent Implantation Failure. Reprod Sci 2018; 26:879-890. [PMID: 30081718 DOI: 10.1177/1933719118792104] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this prospective cohort study was to identify altered biologic processes in the endometrium that may be potential markers of receptive endometrium in patients with repeated implantation failure (RIF) as compared with fertile controls. The study was conducted in a university-affiliated in vitro fertilization (IVF) gynecology clinic and molecular biology and genetics laboratory. Healthy fertile controls (n = 24) and patients with RIF (n = 24) were recruited. Window of implantation gene profiling associated with RIF was performed. Six hundred forty-one differentially expressed genes were identified, and 44 pathways were found enriched. Upon clustering of the enriched pathways, 9 representative pathways were established. The important pathways that were identified included circadian rhythm, pathways in cancer, proteasome, complement and coagulation cascades, citrate cycle, adherens junction, immune system and inflammation, cell cycle, and renin-angiotensin system. The involvement of the circadian rhythm pathway and other related pathways may alter the endometrium's functioning to ultimately cause RIF. Furthermore, we found that the pathogenesis of RIF was multifaceted and that numerous processes were involved. We believe that a better understanding of the underlying mechanisms of RIF will ultimately give rise to better treatment opportunities and to better outcomes in IVF.
Collapse
Affiliation(s)
- Ercan Bastu
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Ataşehir, Istanbul, Turkey.
| | - Irem Demiral
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Ege Ulgen
- Department of Biostatistics and Medical Informatics, Acibadem University School of Medicine, Istanbul, Turkey
| | - Ece Gumusoglu
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | | | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem University School of Medicine, Istanbul, Turkey
| | - Faruk Buyru
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Ataşehir, Istanbul, Turkey
| | - John Yeh
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Preeclampsia affects 3-4% of pregnancies with few treatment options to reduce maternal and fetal harm. Recent evidence that targeting the complement system may be an effective therapeutic strategy in prevention or treatment of preeclampsia will be reviewed. RECENT FINDINGS Studies in humans confirm the safety and efficacy of C5 blockade in complement-mediated disorders of pregnancy, including preeclampsia. Animal models mimic the placental abnormalities and/or the maternal symptoms which characterize preeclampsia. These models in mouse and rat have defined a role for complement and its regulators in placental dysfunction, hypertension, proteinuria, endothelial dysfunction, fetal growth restriction, and angiogenic imbalance, thus informing future human studies. Targeting excessive complement activation, particularly the terminal complement complex (C5b-9) and C5a may be an effective strategy to prolong pregnancy in women with preeclampsia. Continued research is needed to identify the initiator(s) of activation, the pathways involved, and the key component(s) in the pathophysiology to allow development of safe and effective therapeutics to target complement without compromising its role in homeostasis and host defense.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Dr., Duluth, MN, 55812, USA.
| | - Richard M Burwick
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
23
|
Belime A, Gravel E, Brenet S, Ancelet S, Caneiro C, Hou Y, Thielens N, Doris E, Ling WL. Mode of PEG Coverage on Carbon Nanotubes Affects Binding of Innate Immune Protein C1q. J Phys Chem B 2017; 122:757-763. [PMID: 28915042 DOI: 10.1021/acs.jpcb.7b06596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface modification of nanoparticles with poly(ethylene glycol) (PEG) is used in biomedicine to increase the circulation time of the particles after intravenous injection. Here, we study the interaction of PEG-covered carbon nanotubes (CNTs) with the serum complement protein C1q. Besides being the target-recognizing unit of the initiating complex for the classical pathway of complement in our innate immune system, C1q is involved in a range of important physiological processes. We modified the surface of multiwalled CNTs with covalently grafted PEG and physically adsorbed PEG. Transmission electron microscopy revealed the interaction of these PEG-coated CNTs with C1q. We found abundant C1q coverage on the PEG-grafted CNTs but not on the CNTs with adsorbed PEG. We tested the ability of these CNTs to activate the complement system using in vitro complement activation assays. None of the CNTs studied activated the C1q-dependent classical complement pathway. These findings are pertinent to the safe design and novel biomedical applications of PEGylated CNTs.
Collapse
Affiliation(s)
- Agathe Belime
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay , 91191 Gif-sur-Yvette, France
| | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay , 91191 Gif-sur-Yvette, France
| | - Sophie Brenet
- Univ. Grenoble Alpes , CNRS, CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Sarah Ancelet
- Univ. Grenoble Alpes , CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Yanxia Hou
- Univ. Grenoble Alpes , CNRS, CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Nicole Thielens
- Univ. Grenoble Alpes , CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay , 91191 Gif-sur-Yvette, France
| | - Wai Li Ling
- Univ. Grenoble Alpes , CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|