1
|
Zou Z, Li Y, Liu J, Huang B. Identification and Validation of Oxidative Stress-Related Biomarkers for Bronchopulmonary Dysplasia. Mol Biotechnol 2024:10.1007/s12033-024-01281-9. [PMID: 39292413 DOI: 10.1007/s12033-024-01281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
The objective of this study was to identify and characterize oxidative stress (OS)-related biomarkers in bronchopulmonary dysplasia (BPD) through a combination of bioinformatics analyses and wet experiments. The study utilized the Gene Expression Omnibus database to obtain the mRNA expression profile dataset GSE32472. Differential expression analysis and functional enrichment analysis were employed to investigate the role of OS-related genes in BPD. Gene Ontology Function Enrichment Analysis and Gene Set Enrichment Analysis were conducted to understand the mechanisms behind the signature. Protein-protein interaction analysis to identify hub genes in BPD, and predictions were made for microRNAs (miRNAs), transcription factors (TFs), and potential medications targeting these genes. CIBERSORT was utilized to investigate the correlation between hub genes and the infiltration of immune cells. Hub genes were ultimately determined and confirmed using expression analysis, correlation analysis, receiver operating characteristic (ROC) analysis, and quantitative real-time PCR (qRT-PCR). A novel OS-related gene signature (ARG1, CSF3R, IL1R1, IL1R2, MMP9, RETN, S100A12, and SOCS3) was constructed for the prediction of BPD. We identified 18 miRNAs, 14 TFs, and 30 potential medications targeting these genes. ROC analysis further validated that these genes could diagnose BPD with high specificity and sensitivity. The qRT-PCR revealed that IL1R1 and ARG1 were highly expressed in the lung tissue of the model group, while the expressions of RETN, SOCS3, IL1R2, and MMP9 were decreased. This study demonstrated that ARG1, CSF3R, IL1R1, IL1R2, MMP9, RETN, S100A12, and SOCS3 may serve as potential diagnostic biomarkers in BPD. Furthermore, a significant association between IL1R1 and the pathogenesis of BPD is observed.
Collapse
Affiliation(s)
- Zhenzhuang Zou
- Department of Pediatrics, The Fifth Affiliated Hospital of Zunyi Medical University, No.1439 Zhufeng Avenue, Doumen District, Zhuhai, 519100, Guangdong, People's Republic of China
- Department of Pediatrics, Women and Children, Health Institute of Futian Shenzhen, Shenzhen, 518000, China
| | - Yunrong Li
- Department of PICU, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jiaying Liu
- Department of Pediatrics, The Fifth Affiliated Hospital of Zunyi Medical University, No.1439 Zhufeng Avenue, Doumen District, Zhuhai, 519100, Guangdong, People's Republic of China
| | - Bo Huang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zunyi Medical University, No.1439 Zhufeng Avenue, Doumen District, Zhuhai, 519100, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Bunga PK, Balaga VS, Raju R, Suvvari TK, Sivaraj N, Narayan G, Ramadugu R, Arigapudi N, Kande MB, Panchanani A. Association of MTHFD1 G1958A Polymorphism with Gestational Diabetes Mellitus. Cureus 2024; 16:e53287. [PMID: 38435941 PMCID: PMC10905650 DOI: 10.7759/cureus.53287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Background The MTHFD1 G1958A polymorphism is a common variation in the gene encoding methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), an enzyme crucial for folate metabolism. This study investigated the association between the MTHFD1 G1958A polymorphism, which is involved in folate metabolism, and gestational diabetes mellitus (GDM) risk. Methods A case-control study was conducted and 304 pregnant women (152 with gestational diabetes as cases and 152 healthy pregnant as controls) participated in the study. The polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) techniques were used to determine the MTHFD1 1958G>A polymorphism genotypes. Results Analysis of genotype frequencies revealed a statistically significant difference (p-value < 0.05) between the GDM group and the control group, suggesting a potential association between this gene variant and the development of GDM. Interestingly, while allele frequencies alone did not show a significant association with GDM risk, analysis in a recessive model (both severe and mild forms) demonstrated a strong link between the homozygous AA genotype and increased susceptibility to GDM. Conclusion This study provides the first evidence linking the MTHFD1 G1958A polymorphism and GDM risk in an Indian setting. These findings warrant further investigation into the functional impact of the MTHFD1 G1958A polymorphism and its potential role in the pathogenesis of GDM.
Collapse
Affiliation(s)
- Papa Kusuma Bunga
- Research and Development, Great Eastern Medical School & Hospital, Srikakulam, IND
| | - Vijaya Sirisha Balaga
- Obstetrics and Gynaecology, Great Eastern Medical School & Hospital, Srikakulam, IND
| | - Riya Raju
- Internal Medicine, Maharajah Institute of Medical Sciences, Vizianagaram, IND
| | - Tarun Kumar Suvvari
- General Medicine, Rangaraya Medical College, Kakinada, IND
- Research, Squad Medicine and Research (SMR), Visakhapatnam, IND
| | - Nagarjuna Sivaraj
- Research and Development, Great Eastern Medical School & Hospital, Srikakulam, IND
| | - Gaurang Narayan
- Obstetrics and Gynecology, Indira Gandhi Government Medical College & Hospital, Nagpur, IND
| | - Rithika Ramadugu
- Surgery, Kamineni Academy of Medical Science And Research Centre, Hyderabad, IND
| | - Nithya Arigapudi
- Genetics, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences & Research Foundation, Vijayawada, IND
| | - Mahesh Babu Kande
- Internal Medicine, Great Eastern Medical School & Hospital, Srikakulam, IND
| | - Arun Panchanani
- Internal Medicine, Great Eastern Medical School & Hospital, Srikakulam, IND
| |
Collapse
|
3
|
He D, Peng X, Xie H, Peng R, Li Q, Guo Y, Wang W, He H, Chen Y. Genetic Variations in Angiotensinogen Gene and Risk of Preeclampsia: A Pilot Study. J Clin Med 2023; 12:jcm12041509. [PMID: 36836041 PMCID: PMC9966751 DOI: 10.3390/jcm12041509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Preeclampsia (PE) is a typical hypertensive disorders of pregnancy (HDP) which can cause substantial morbidity and mortality in both pregnant women and fetuses. The renin-angiotensin system (RAS) genes are the main HDP-causing genes, and Angiotensinogen (AGT) as the initial substrate can directly reflect the activity of the entire RAS. However, the association between AGT SNPs and PE risk has rarely been confirmed. This study was carried out to determine whether AGT SNPs could affect the risk of PE in 228 cases and 358 controls. The genotyping result revealed that the AGT rs7079 TT carrier was related to increased PE risk. Further stratified analysis illustrated that the rs7079 TT genotype significantly increased the PE risk in subgroups of Age < 35, BMI < 25, Albumin (ALB) ≥ 30 and Aspartate aminotransferase (AST) < 30. These findings demonstrated that the rs7079 might be a promising candidate SNP strongly associated with PE susceptibility.
Collapse
Affiliation(s)
- Dong He
- Guangdong Provincial Key Laboratory of Pathogenesis of Heart and Spleen and Prescription Drugs Research, Department of Pharmacology, School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xianglan Peng
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Hongkai Xie
- Guangdong Provincial Key Laboratory of Pathogenesis of Heart and Spleen and Prescription Drugs Research, Department of Pharmacology, School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Rui Peng
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Qixuan Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yitong Guo
- Guangdong Provincial Key Laboratory of Pathogenesis of Heart and Spleen and Prescription Drugs Research, Department of Pharmacology, School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Pathogenesis of Heart and Spleen and Prescription Drugs Research, Department of Pharmacology, School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hong He
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Correspondence: (H.H.); (Y.C.)
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Pathogenesis of Heart and Spleen and Prescription Drugs Research, Department of Pharmacology, School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Correspondence: (H.H.); (Y.C.)
| |
Collapse
|
4
|
Mora-Palazuelos C, Bermúdez M, Aguilar-Medina M, Ramos-Payan R, Ayala-Ham A, Romero-Quintana JG. Cytokine-polymorphisms associated with Preeclampsia: A review. Medicine (Baltimore) 2022; 101:e30870. [PMID: 36181055 PMCID: PMC9524891 DOI: 10.1097/md.0000000000030870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is a syndromic disorder that affects 2% to 8% of pregnancies and is diagnosed principally when hypertension appears in the second-d half of pregnancy. WHO estimates the incidence of PE to be seven times higher in developing countries than in developed countries. Severe preeclampsia/eclampsia is one of the most important causes of maternal mortality, associated with 50,000 to 100,000 annual deaths globally as well as serious fetal and neonatal morbidity and mortality, especially in developing countries. Even though evidence from family-based studies suggest PE has a heritable component, its etiology, and specific genetic contributions remain unclear. Many studies examining the genetic factors contributing to PE have been conducted, most of them are focused on single nucleotide polymorphisms (SNPs). Given that PE has a very important inflammatory component, is mandatory to examine cytokine-SNPs for elucidating all mechanisms involved in this pathology. In this review, we describe the most important cytokine-polymorphisms associated with the onset and development of PE. We aim to provide current and relevant evidence in this regard. METHODS We searched English databases such as PubMed and the National Center for Biotechnology Information. The publication time of the papers was set from the establishment of the databases to February 2022. All studies about Th1/Th2/Th17 cytokines polymorphisms were included in our study. RESULTS SNPs in IFN-γ, TNF-α, IL-4, IL-6, IL-10, IL-17A, and IL-22 are associated with the development, early-onset and severity of PE, being the Th1/Th2/Th17 responses affected by the presence of these SNPs. CONCLUSIONS The changes in Th1/Th2/Th17 response modify processes such as placentation, control of inflammation, and vascular function. Nonetheless, association studies have shown different results depending on sample size, diagnostic, and population.
Collapse
Affiliation(s)
| | - Mercedes Bermúdez
- Facultad de Odontología, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Rosalío Ramos-Payan
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Alfredo Ayala-Ham
- Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Jose Geovanni Romero-Quintana
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
- *Correspondence: Jose Geovanni Romero-Quintana, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Josefa Ortiz DE Domínguez S/N y Avenida DE las Américas, CP. 80010, Culiacán, Sinaloa, México (e-mail: )
| |
Collapse
|
5
|
Sivaraj N, K VR, Suvvari TK, Prasad S, Sri Harsha B, Majji V, Vegi PK, Bunga PK. Evaluation of the Association of Single Nucleotide Polymorphism rs2229238 in Interleukin 6 Receptor Alpha (IL6RA) Gene With the Risk of Preeclampsia. Cureus 2022; 14:e24788. [PMID: 35673309 PMCID: PMC9165912 DOI: 10.7759/cureus.24788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 01/08/2023] Open
|