1
|
Hadipour E, Emami SA, Tayarani‐Najaran N, Tayarani‐Najaran Z. Effects of sesame ( Sesamum indicum L.) and bioactive compounds (sesamin and sesamolin) on inflammation and atherosclerosis: A review. Food Sci Nutr 2023; 11:3729-3757. [PMID: 37457142 PMCID: PMC10345702 DOI: 10.1002/fsn3.3407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 07/18/2023] Open
Abstract
Inflammation, oxidative stress, obesity, infection, hyperlipidemia, hypertension, and diabetes are the main causes of atherosclerosis, which in the long term lead to hardening of the arteries. In the current study, we reviewed recent findings of the mechanism of sesame and its active compounds of sesamin and sesamolin regulates on atherosclerosis. Sesame can decrease the lipid peroxidation and affect the enzymes, which control the balance of oxidative status in the body. Besides modulating the inflammatory cytokines, sesame regulates the main mediators of the signaling pathways in the process of inflammation, such as prostaglandin E2 (PGE2), nuclear factor kappa light-chain enhancer of activated B cells (NF-kB) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Sesame decreases the growth of different pathogens. It fights against obesity and helps to reduce weight, body mass index (BMI), waist circumference, and lipid count of serum and liver. In addition to lowering fasting blood sugar (FBS), it decreases the hemoglobin A1c (HbA1c) and glucose levels and improves insulin function. With high content of linoleic acid, α-linolenic acid, and total polyunsaturated fatty acid (PUFA), sesame efficiently controls the blood plasma lipids and changes the lipid profile. In the case of hypertension, it maintains the health of endothelium through multiple mechanisms and conserves the response of the arteries to vasodilation. PUFA in sesame suppresses blood clotting and fibrinogen activity. All the mentioned properties combat atherosclerosis and hardening of blood vessels, which are detailed in the present review for sesame.
Collapse
Affiliation(s)
- Elham Hadipour
- Department of Biology, Faculty of ScienceUniversity of GuilanRashtIran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Niloufar Tayarani‐Najaran
- Department of Dental Prosthesis, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Zahra Tayarani‐Najaran
- Targeted Drug Delivery Research CenterPharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Kilic A, Ustunova S, Bulut H, Meral I. Pre and postnatal exposure to 900 MHz electromagnetic fields induce inflammation and oxidative stress, and alter renin-angiotensin system components differently in male and female offsprings. Life Sci 2023; 321:121627. [PMID: 36997060 DOI: 10.1016/j.lfs.2023.121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
AIMS This study was designed to investigate inflammation, oxidative stress and renin-angiotensin system components in brain and kidney tissues of female and male rats prenatally and/or postnatally exposed to 900 MHz electromagnetic field (EMF). It is aimed to evaluate the biological effects of 900 MHz EMF exposure due to the increase in mobile phone use and especially the more widespread use of the GSM 900 system. MAIN METHODS Male and female Wistar albino offsprings were divided into four groups of control, prenatal, postnatal, and prenatal+postnatal exposed to 900 MHz EMF for 1 h/day (23 days during pregnancy for prenatal period, 40 days for postnatal period). The brain and kidney tissues were collected when they reached puberty. KEY FINDINGS It was found that the total oxidant status, IL-2, IL-6, and TNF-α levels increased (p < 0.001) and the total antioxidant status levels decreased (p < 0.001) in all three EMF groups comparing to controls in both male and female brain and kidney tissues. The renin- angiotensin system components such as angiotensinogen, renin, angiotensin type 1 and type 2 receptors, and MAS1-like G protein-coupled receptor expression were higher (p < 0.001) in all three EMF exposure groups comparing to controls in both male and female brain and kidney tissues. Although there are some differences of the levels of proinflammatory markers, ROS components and RAS components in brain and kidney tissues between males and females, the common result of all groups was increase in oxidative stress, inflammation markers and angiotensin system components with exposure to 900 MHz EMF. SIGNIFICANCE In conclusion, our study suggested that the 900 MHz EMF can activate brain and kidney renin-angiotensin system, and this activation is maybe related to inflammation and oxidative stress in both male and female offsprings.
Collapse
Affiliation(s)
- Aysu Kilic
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Savas Ustunova
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Huri Bulut
- Department of Medical Biochemistry, School of Medicine, Istinye University, Istanbul, Turkey
| | - Ismail Meral
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey.
| |
Collapse
|
3
|
Özdemir E, Çömelekoğlu Ü, Degirmenci E, Bayrak G, Yildirim M, Ergenoglu T, Coşkun Yılmaz B, Korunur Engiz B, Yalin S, Koyuncu DD, Ozbay E. The effect of 4.5 G (LTE Advanced-Pro network) mobile phone radiation on the optic nerve. Cutan Ocul Toxicol 2021; 40:198-206. [PMID: 33653184 DOI: 10.1080/15569527.2021.1895825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Rapid development in mobile phone technologies increase the average mobile phone usage duration. This increase also triggers exposure to radiofrequency radiation (RF), which is a risk factor for the health. In this study, it was aimed to investigate the effect of mobile phone working with LTE-Advanced Pro (4.5 G) mobile network on the optic nerve, which is responsible for the transmission of visual information. MATERIAL AND METHODS Thirty-two rats divided into two groups as control (no RF, sham exposure) and experimental (RF exposure using a mobile phone with LTE-Advanced Pro network; 2 hours/day, 6 weeks). The visual evoked potential (VEP) was recorded and determined amplitudes and latencies of VEP waves. Optic nerve malondialdehyde level, catalase and superoxide dismutase activities were determined. Furthermore, ultrastructural and morphometric changes of optic nerve were evaluated. RESULTS In VEP recordings, the mean VEP amplitudes of experimental group were significantly lower than control group. In ultrastructural evaluation, myelinated nerve fibres and glial cells were observed in normal histologic appearance both in sham and experimental group. However, by performing morphometric analysis, in the experimental group, axonal diameter and myelin thickness were shown to be lower and the G-ratio was higher than in the sham group. In the experimental group, malondialdehyde level was significantly higher and superoxide dismutase and catalase activities were significantly lower than sham group. There was a high correlation between VEP wave amplitudes and oxidative stress markers. CONCLUSION Findings obtained in this study support optic nerve damage. These results point out an important risk that may decrease the quality of life.
Collapse
Affiliation(s)
- Erkin Özdemir
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ülkü Çömelekoğlu
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Evren Degirmenci
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Gülsen Bayrak
- Department of Histology-Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Metin Yildirim
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Tolgay Ergenoglu
- Department of Physiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Banu Coşkun Yılmaz
- Department of Histology-Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Begüm Korunur Engiz
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Samsun Ondokuz Mayıs University, Samsun, Turkey
| | - Serap Yalin
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Dilan Deniz Koyuncu
- Department of Physiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Erkan Ozbay
- Vocational School of Health Service, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
4
|
Zosangzuali M, Lalremruati M, Lalmuansangi C, Nghakliana F, Pachuau L, Bandara P, Zothan Siama. Effects of radiofrequency electromagnetic radiation emitted from a mobile phone base station on the redox homeostasis in different organs of Swiss albino mice. Electromagn Biol Med 2021; 40:393-407. [PMID: 33687298 DOI: 10.1080/15368378.2021.1895207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study was designed to investigate the possible effects of exposure to mobile phone base station (MPBS) emits 1800-MHz RF-EMR on some oxidative stress parameters in the brain, heart, kidney and liver of Swiss albino mice under exposures below thermal levels. Mice were randomly assigned to three experimental groups which were exposed to RF-EMR for 6 hr/day, 12 hr/day and 24 hr/day for 45 consecutive days, respectively, and a control group. The glutathione (GSH) levels and activities of glutathione-s-transferase (GST) and superoxide dismutase (SOD) were significantly reduced in mice brain after exposure to RF-EMR for 12 hr and 24 hr per day. Exposure of mice to RF-EMR for 12 hr and 24 hr per day also led to a significant increase in malondialdehyde (an index of lipid peroxidation) levels in mice brain. On the contrary, exposures used in this study did not induce any significant change in various oxidative stress-related parameters in the heart, kidney and liver of mice. Our findings showed no significant variations in the activities of aspartate amino-transferase (AST), alanine amino-transferase (ALT), and on the level of creatinine (CRE) in the exposed mice. This study also revealed a decrease in RBC count with an increase in WBC count in mice subjected to 12 hr/day and 24 hr/day exposures. Exposure to RF-EMR from MPBS may cause adverse effects in mice brain by inducing oxidative stress arising from the generation of reactive oxygen species (ROS) as indicated by enhanced lipid peroxidation, and reduced levels and activities of antioxidants.
Collapse
Affiliation(s)
| | | | - C Lalmuansangi
- Department of Zoology, Mizoram University, Aizawl, India
| | - F Nghakliana
- Department of Zoology, Mizoram University, Aizawl, India
| | - Lalrinthara Pachuau
- Department of Physics, Pachhunga University College, Mizoram University, Aizawl, India
| | - Priyanka Bandara
- Executive Board, Oceania Radiofrequency Scientific Advisory Association (ORSAA), Brisbane, Australia
| | - Zothan Siama
- Department of Zoology, Mizoram University, Aizawl, India
| |
Collapse
|
5
|
Afroz M, Zihad SMNK, Uddin SJ, Rouf R, Rahman MS, Islam MT, Khan IN, Ali ES, Aziz S, Shilpi JA, Nahar L, Sarker SD. A systematic review on antioxidant and antiinflammatory activity of Sesame (
Sesamum indicum
L.) oil and further confirmation of antiinflammatory activity by chemical profiling and molecular docking. Phytother Res 2019; 33:2585-2608. [DOI: 10.1002/ptr.6428] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/10/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Mohasana Afroz
- Pharmacy Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | | | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Faculty of Life ScienceBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Md. Shamim Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology DevelopmentTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of PharmacyTon Duc Thang University Ho Chi Minh City Vietnam
| | - Ishaq N. Khan
- PK‐NeuroOncology Research Group, Institute of Basic Medical SciencesKhyber Medical University Peshawar Pakistan
| | - Eunüs S. Ali
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of Medicine Chicago Illinois
| | - Shahin Aziz
- Chemical Research DivisionBangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of ScienceLiverpool John Moores University Liverpool UK
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of ScienceLiverpool John Moores University Liverpool UK
| |
Collapse
|
6
|
Wan Y, Li H, Fu G, Chen X, Chen F, Xie M. The relationship of antioxidant components and antioxidant activity of sesame seed oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2571-8. [PMID: 25472416 DOI: 10.1002/jsfa.7035] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/16/2014] [Accepted: 12/02/2014] [Indexed: 05/27/2023]
Abstract
Although sesame seed oil contains high levels of unsaturated fatty acids and even a small amount of free fatty acids in its unrefined flavored form, it shows markedly greater stability than other dietary vegetable oils. The good stability of sesame seed oil against autoxidation has been ascribed not only to its inherent lignans and tocopherols but also to browning reaction products generated when sesame seeds are roasted. Also, there is a strong synergistic effect among these components. The lignans in sesame seed oil can be categorized into two types, i.e. inherent lignans (sesamin, sesamolin) and lignans mainly formed during the oil production process (sesamol, sesamolinol, etc.). The most abundant tocopherol in sesame seed oil is γ-tocopherol. This article reviews the antioxidant activities of lignans and tocopherols as well as the browning reaction and its products in sesame seed and/or its oil. It is concluded that the composition and structure of browning reaction products and their impacts on sesame ingredients need to be further studied to better explain the remaining mysteries of sesame oil.
Collapse
Affiliation(s)
- Yin Wan
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Huixiao Li
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Xueyang Chen
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Feng Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
7
|
Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 2015; 35:186-202. [PMID: 26151230 DOI: 10.3109/15368378.2015.1043557] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review aims to cover experimental data on oxidative effects of low-intensity radiofrequency radiation (RFR) in living cells. Analysis of the currently available peer-reviewed scientific literature reveals molecular effects induced by low-intensity RFR in living cells; this includes significant activation of key pathways generating reactive oxygen species (ROS), activation of peroxidation, oxidative damage of DNA and changes in the activity of antioxidant enzymes. It indicates that among 100 currently available peer-reviewed studies dealing with oxidative effects of low-intensity RFR, in general, 93 confirmed that RFR induces oxidative effects in biological systems. A wide pathogenic potential of the induced ROS and their involvement in cell signaling pathways explains a range of biological/health effects of low-intensity RFR, which include both cancer and non-cancer pathologies. In conclusion, our analysis demonstrates that low-intensity RFR is an expressive oxidative agent for living cells with a high pathogenic potential and that the oxidative stress induced by RFR exposure should be recognized as one of the primary mechanisms of the biological activity of this kind of radiation.
Collapse
Affiliation(s)
- Igor Yakymenko
- a Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Olexandr Tsybulin
- b Department of Biophysics , Bila Tserkva National Agrarian University , Bila Tserkva , Ukraine
| | - Evgeniy Sidorik
- a Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Diane Henshel
- c School of Public and Environmental Affairs , Indiana University Bloomington , Bloomington , IN , USA
| | - Olga Kyrylenko
- d A.I. Virtanen Institute, University of Eastern Finland , Kuopio , Finland
| | - Sergiy Kyrylenko
- e Department of Structural and Functional Biology , University of Campinas , Campinas , Brazil
| |
Collapse
|