1
|
Egorkin NA, Dominnik EE, Maksimov EG, Sluchanko NN. Insights into the molecular mechanism of yellow cuticle coloration by a chitin-binding carotenoprotein in gregarious locusts. Commun Biol 2024; 7:448. [PMID: 38605243 PMCID: PMC11009388 DOI: 10.1038/s42003-024-06149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Carotenoids are hydrophobic pigments binding to diverse carotenoproteins, many of which remain unexplored. Focusing on yellow gregarious locusts accumulating cuticular carotenoids, here we use engineered Escherichia coli cells to reconstitute a functional water-soluble β-carotene-binding protein, BBP. HPLC and Raman spectroscopy confirmed that recombinant BBP avidly binds β-carotene, inducing the unusual vibronic structure of its absorbance spectrum, just like native BBP extracted from the locust cuticles. Bound to recombinant BBP, β-carotene exhibits pronounced circular dichroism and allows BBP to withstand heating (T0.5 = 68 °C), detergents and pH variations. Using bacteria producing distinct xanthophylls we demonstrate that, while β-carotene is the preferred carotenoid, BBP can also extract from membranes ketocarotenoids and, very poorly, hydroxycarotenoids. We show that BBP-carotenoid complex reversibly binds to chitin, but not to chitosan, implying the role for chitin acetyl groups in cuticular BBP deposition. Reconstructing such locust coloration mechanism in vitro paves the way for structural studies and BBP applications.
Collapse
Affiliation(s)
- Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Eva E Dominnik
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Chemistry, Moscow, Russia
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Ghosh S, Salama F, Dines M, Lahav A, Adir N. Biophysical and structural characterization of the small heat shock protein HspA from Thermosynechococcus vulcanus in 2 M urea. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:442-452. [PMID: 30711645 DOI: 10.1016/j.bbapap.2018.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Small heat shock proteins (sHSPs) belong to the superfamily of molecular chaperones. They prevent aggregation of partially unfolded or misfolded client proteins, providing protection to organisms under stress conditions. Here, we report the biophysical and structural characterization of a small heat shock protein (HspA) from a thermophilic cyanobacterium Thermosynechococcus vulcanus in the presence of 2 M urea. HspA has been shown to be important for the protection of Photosystem II and the Phycobilisome antenna complex at elevated temperatures. Heterologously expressed HspA requires the presence of 1-2 M urea to maintain its solubility at concentrations required for most characterization methods. Spectroscopic studies reveal the presence of the β-sheet structure and intactness of the tertiary fold in HspA. In vitro assays show that the HspA maintains chaperone-like activity in protecting soluble proteins from thermal aggregation. Chromatography and electron microscopy show that the HspA exists as a mixture of oligomeric forms in the presence of 2 M urea. HspA was successfully crystallized only in the presence of 2 M urea. The crystal structure of HspA shows urea-induced loss of about 30% of the secondary structure without major alteration in the tertiary structure of the protein. The electron density maps reveal changes in the hydrogen bonding network which we attribute to the presence of urea. The crystal structure of HspA demonstrates a mixture of both direct interactions between urea and protein functionalities and interactions between urea and the surrounding solvent that indirectly affect the protein, which are in accordance with previously published studies.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Faris Salama
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Monica Dines
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Avital Lahav
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
3
|
Harris D, Wilson A, Muzzopappa F, Sluchanko NN, Friedrich T, Maksimov EG, Kirilovsky D, Adir N. Structural rearrangements in the C-terminal domain homolog of Orange Carotenoid Protein are crucial for carotenoid transfer. Commun Biol 2018; 1:125. [PMID: 30272005 PMCID: PMC6123778 DOI: 10.1038/s42003-018-0132-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
A recently reported family of soluble cyanobacterial carotenoproteins, homologs of the C-terminal domain (CTDH) of the photoprotective Orange Carotenoid Protein, is suggested to mediate carotenoid transfer from the thylakoid membrane to the Helical Carotenoid Proteins, which are paralogs of the N-terminal domain of the OCP. Here we present the three-dimensional structure of a carotenoid-free CTDH variant from Anabaena (Nostoc) PCC 7120. This CTDH contains a cysteine residue at position 103. Two dimer-forming interfaces were identified, one stabilized by a disulfide bond between monomers and the second between each monomer's β-sheets, both compatible with small-angle X-ray scattering data and likely representing intermediates of carotenoid transfer processes. The crystal structure revealed a major positional change of the C-terminal tail. Further mutational analysis revealed the importance of the C-terminal tail in both carotenoid uptake and delivery. These results have allowed us to suggest a detailed model for carotenoid transfer via these soluble proteins.
Collapse
Affiliation(s)
- Dvir Harris
- Schulich Faculty of Chemistry, Technion, 3200003, Haifa, Israel
- Grand Technion Energy Program (GTEP), Technion, 3200003, Haifa, Israel
| | - Adjele Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center, "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif sur Yvette, France.
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion, 3200003, Haifa, Israel.
- Grand Technion Energy Program (GTEP), Technion, 3200003, Haifa, Israel.
| |
Collapse
|
4
|
Nguyen AY, Bricker WP, Zhang H, Weisz DA, Gross ML, Pakrasi HB. The proteolysis adaptor, NblA, binds to the N-terminus of β-phycocyanin: Implications for the mechanism of phycobilisome degradation. PHOTOSYNTHESIS RESEARCH 2017; 132:95-106. [PMID: 28078551 PMCID: PMC5576716 DOI: 10.1007/s11120-016-0334-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Phycobilisome (PBS) complexes are massive light-harvesting apparati in cyanobacteria that capture and funnel light energy to the photosystem. PBS complexes are dynamically degraded during nutrient deprivation, which causes severe chlorosis, and resynthesized during nutrient repletion. PBS degradation occurs rapidly after nutrient step down, and is specifically triggered by non-bleaching protein A (NblA), a small proteolysis adaptor that facilitates interactions between a Clp chaperone and phycobiliproteins. Little is known about the mode of action of NblA during PBS degradation. In this study, we used chemical cross-linking coupled with LC-MS/MS to investigate the interactions between NblA and phycobiliproteins. An isotopically coded BS3 cross-linker captured a protein interaction between NblA and β-phycocyanin (PC). LC-MS/MS analysis identified the amino acid residues participating in the binding reaction, and demonstrated that K52 in NblA is cross-linked to T2 in β-PC. These results were modeled onto the existing crystal structures of NblA and PC by protein docking simulations. Our data indicate that the C-terminus of NblA fits in an open groove of β-PC, a region located inside the central hollow cavity of a PC rod. NblA may mediate PBS degradation by disrupting the structural integrity of the PC rod from within the rod. In addition, M1-K44 and M1-K52 cross-links between the N-terminus of NblA and the C-terminus of NblA are consistent with the NblA crystal structure, confirming that the purified NblA is structurally and biologically relevant. These findings provide direct evidence that NblA physically interacts with β-PC.
Collapse
Affiliation(s)
- Amelia Y Nguyen
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA
- US Environmental Protection Agency, 1200 Pennsylvania Ave, NW (MC-7403M), Washington, DC, 20460, USA
| | - William P Bricker
- Laboratory for Computational Biology & Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Daniel A Weisz
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA.
| |
Collapse
|
5
|
Albrecht R, Zeth K. Crystallization and preliminary X-ray data collection of the Escherichia coli lipoproteins BamC, BamD and BamE. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1586-90. [PMID: 21139201 DOI: 10.1107/s1744309110034160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/24/2010] [Indexed: 11/10/2022]
Abstract
In Escherichia coli, the β-barrel assembly machinery (or BAM complex) mediates the recognition, insertion and assembly of outer membrane proteins. The complex consists of the integral membrane protein BamA (an Omp85-family member) and the lipoproteins BamB, BamC, BamD and BamE. The purification and crystallization of BamC, BamD and BamE, each lacking the N-terminal membrane anchor, is described. While the smallest protein BamE yielded crystals under conventional conditions, BamD only crystallized after stabilization with urea. Full-length BamC did not crystallize, but was cleaved by subtilisin into two domains which were subsequently crystallized independently. High-resolution data were acquired from all proteins.
Collapse
Affiliation(s)
- Reinhard Albrecht
- Max-Planck-Institut für Entwicklungsbiologie, Department of Protein Evolution, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | |
Collapse
|
6
|
Karradt A, Sobanski J, Mattow J, Lockau W, Baier K. NblA, a key protein of phycobilisome degradation, interacts with ClpC, a HSP100 chaperone partner of a cyanobacterial Clp protease. J Biol Chem 2008; 283:32394-403. [PMID: 18818204 DOI: 10.1074/jbc.m805823200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When cyanobacteria are starved for nitrogen, expression of the NblA protein increases and thereby induces proteolytic degradation of phycobilisomes, light-harvesting complexes of pigmented proteins. Phycobilisome degradation leads to a color change of the cells from blue-green to yellow-green, referred to as bleaching or chlorosis. As reported previously, NblA binds via a conserved region at its C terminus to the alpha-subunits of phycobiliproteins, the main components of phycobilisomes. We demonstrate here that a highly conserved stretch of amino acids in the N-terminal helix of NblA is essential for protein function in vivo. Affinity purification of glutathione S-transferase-tagged NblA, expressed in a Nostoc sp. PCC7120 mutant lacking wild-type NblA, resulted in co-precipitation of ClpC, encoded by open reading frame alr2999 of the Nostoc chromosome. ClpC is a HSP100 chaperone partner of the Clp protease. ATP-dependent binding of NblA to ClpC was corroborated by in vitro pull-down assays. Introducing amino acid exchanges, we verified that the conserved N-terminal motif of NblA mediates the interaction with ClpC. Further results indicate that NblA binds phycobiliprotein subunits and ClpC simultaneously, thus bringing the proteins into close proximity. Altogether these results suggest that NblA may act as an adaptor protein that guides a ClpC.ClpP complex to the phycobiliprotein disks in the rods of phycobilisomes, thereby initiating the degradation process.
Collapse
Affiliation(s)
- Anne Karradt
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin
| | | | | | | | | |
Collapse
|
7
|
Dines M, Sendersky E, David L, Schwarz R, Adir N. Structural, functional, and mutational analysis of the NblA protein provides insight into possible modes of interaction with the phycobilisome. J Biol Chem 2008; 283:30330-40. [PMID: 18718907 DOI: 10.1074/jbc.m804241200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enormous macromolecular phycobilisome antenna complex (>4 MDa) in cyanobacteria and red algae undergoes controlled degradation during certain forms of nutrient starvation. The NblA protein (approximately 6 kDa) has been identified as an essential component in this process. We have used structural, biochemical, and genetic methods to obtain molecular details on the mode of action of the NblA protein. We have determined the three-dimensional structure of the NblA protein from both the thermophilic cyanobacterium Thermosynechococcus vulcanus and the mesophilic cyanobacterium Synechococcus elongatus sp. PCC 7942. The NblA monomer has a helix-loop-helix motif which dimerizes into an open, four-helical bundle, identical to the previously determined NblA structure from Anabaena. Previous studies indicated that mutations to NblA residues near the C terminus impaired its binding to phycobilisome proteins in vitro, whereas the only mutation known to affect NblA function in vivo is located near the protein N terminus. We performed random mutagenesis of the S. elongatus nblA gene which enabled the identification of four additional amino acids crucial for NblA function in vivo. This data shows that essential amino acids are not confined to the protein termini. We also show that expression of the Anabaena nblA gene complements phycobilisome degradation in an S. elongatus NblA-null mutant despite the low homology between NblAs of these cyanobacteria. We propose that the NblA interacts with the phycobilisome via "structural mimicry" due to similarity in structural motifs found in all phycobiliproteins. This suggestion leads to a new model for the mode of NblA action which involves the entire NblA protein.
Collapse
Affiliation(s)
- Monica Dines
- Schulich Faculty of Chemistry and Institute of Catalysis, Science, and Technology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|