1
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
2
|
Luo K, Wang X, Zhang X, Liu Z, Huang S, Li R. The Value of Circulating Tumor Cells in the Prognosis and Treatment of Pancreatic Cancer. Front Oncol 2022; 12:933645. [PMID: 35860591 PMCID: PMC9293050 DOI: 10.3389/fonc.2022.933645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
In the past few decades, tumor diagnosis and treatment theory have developed in a variety of directions. The number of people dying from pancreatic cancer increases while the mortality rate of other common tumors decreases. Traditional imaging methods show the boundaries of pancreatic tumor, but they are not sufficient to judge early micrometastasis. Although carcinoembryonic antigen (CEA) and carbohydrate antigen19-9 (CA19-9) have the obvious advantages of simplicity and minimal invasiveness, these biomarkers obviously lack sensitivity and specificity. Circulating tumor cells (CTCs) have attracted attention as a non-invasive, dynamic, and real-time liquid biopsy technique for analyzing tumor characteristics. With the continuous development of new CTCs enrichment technologies, substantial progress has been made in the basic research of CTCs clinical application prospects. In many metastatic cancers, CTCs have been studied as an independent prognostic factor. This article reviews the research progress of CTCs in the treatment and prognosis of pancreatic cancer.
Collapse
|
3
|
Hervy J, Bicout DJ. Dynamical decoration of stabilized-microtubules by Tau-proteins. Sci Rep 2019; 9:12473. [PMID: 31462746 PMCID: PMC6713733 DOI: 10.1038/s41598-019-48790-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
Tau is a microtubule-associated protein that regulates axonal transport, stabilizes and spatially organizes microtubules in parallel networks. The Tau-microtubule pair is crucial for maintaining the architecture and integrity of axons. Therefore, it is essential to understand how these two entities interact to ensure and modulate the normal axonal functions. Based on evidence from several published experiments, we have developed a two-dimensional model that describes the interaction between a population of Tau proteins and a stabilized microtubule at the scale of the tubulin dimers (binding sites) as an adsorption-desorption dynamical process in which Tau can bind on the microtubule outer surface via two distinct modes: a longitudinal (along a protofilament) and lateral (across adjacent protofilaments) modes. Such a process yields a dynamical distribution of Tau molecules on the microtubule surface referred to as microtubule decoration that we have characterized at the equilibrium using two observables: the total microtubule surface coverage with Tau's and the distribution of nearest neighbors Tau's. Using both analytical and numerical approaches, we have derived expressions and computed these observables as a function of key parameters controlling the binding reaction: the stoichiometries of the Taus in the two binding modes, the associated dissociation constants and the ratio of the Tau concentration to that of microtubule tubulin dimers.
Collapse
Affiliation(s)
- Jordan Hervy
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble, France
- Laboratory of Physics and Modelling of Condensed Matter, Grenoble Alpes University, CNRS, Grenoble, France
| | - Dominique J Bicout
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble, France.
- EPSP, TIMC Laboratory, UMR CNRS 5525 Grenoble Alpes University, VetAgro Sup, Grenoble, France.
| |
Collapse
|
4
|
Szatkowski L, Merz DR, Jiang N, Ejikeme I, Belonogov L, Ross JL, Dima RI. Mechanics of the Microtubule Seam Interface Probed by Molecular Simulations and in Vitro Severing Experiments. J Phys Chem B 2019; 123:4888-4900. [PMID: 31117616 DOI: 10.1021/acs.jpcb.9b03059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microtubules (MTs) are structural components essential for cell morphology and organization. It has recently been shown that defects in the filament's lattice structure can be healed to create stronger filaments in a local area and ultimately cause global changes in MT organization and cell mobility. The ability to break, causing a defect, and heal appears to be a physiologically relevant and important feature of the MT structure. Defects can be created by MT severing enzymes and are target sites for complete severing or for healing by newly incorporated dimers. One particular lattice defect, the MT lattice ''seam" interface, is a location often speculated to be a weak site, a site of disassembly, or a target site for MT binding proteins. Despite seams existing in many MT structures, very little is known about the seam's role in MT function and dynamics. In this study, we probed the mechanical stability of the seam interface by applying coarse-grained indenting molecular dynamics. We found that the seam interface is as structurally robust as the typical lattice structure of MTs. Our results suggest that, unlike prior results that claim the seam is a weak site, it is just as strong as any other location on the MT, corroborating recent mechanical measurements.
Collapse
Affiliation(s)
- Lukasz Szatkowski
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Dale R Merz
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Nan Jiang
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Ifunanya Ejikeme
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Liudmila Belonogov
- Department of Physics , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Jennifer L Ross
- Department of Physics , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Ruxandra I Dima
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| |
Collapse
|
5
|
Donhauser ZJ, Appadoo V, Kliman EJ, Jobs WB, Sheffield EC. Structural Changes in Tubulin Sheets Caused by Immobilization on Solid Supports. ACS OMEGA 2018; 3:18196-18202. [PMID: 30613819 PMCID: PMC6312633 DOI: 10.1021/acsomega.8b02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
In the presence of zinc, the protein tubulin assembles into two-dimensional sheets that are a useful model system for the study of both tubulin and microtubule structure. Tubulin sheets present an ideal protein structure for study with atomic force microscopy because they contain a two-dimensional crystalline protein lattice and retain many of the structural features of tubulin and microtubules. However, high-resolution imaging requires nonperturbative immobilization onto an appropriate imaging substrate. In this report, several substrates commonly used for scanning probe microscopy are evaluated for their ability to effectively immobilize tubulin sheets: mica, gold, highly ordered pyrolytic graphite, and carbon-coated electron microscopy grids. We hypothesize that the different intermolecular interactions presented by these substrates will affect the morphology of adsorbed tubulin sheets as well as the amount of other contaminating adsorbates. Tubulin sheets were successfully imaged on all of these substrates and structural characterization is reported. The most consistent results were obtained on carbon-coated electron microscopy grids, which preserved fine structural features of the sheets and had the least amount of contamination from the adsorption of unpolymerized tubulin. Images of tubulin sheets obtained with atomic force microscopy also compare favorably with published electron micrographs of sheets produced using similar procedures. This work demonstrates the importance of assessing substrate effects when studying two-dimensional protein crystals and identifies suitable substrates for immobilizing tubulin sheets.
Collapse
Affiliation(s)
| | | | - Elysa J. Kliman
- Vassar College, 124 Raymond Avenue, Poughkeepsie, New York 12604, United States
| | - William B. Jobs
- Vassar College, 124 Raymond Avenue, Poughkeepsie, New York 12604, United States
| | - Evan C. Sheffield
- Vassar College, 124 Raymond Avenue, Poughkeepsie, New York 12604, United States
| |
Collapse
|
6
|
Nötzel M, Rosso G, Möllmert S, Seifert A, Schlüßler R, Kim K, Hermann A, Guck J. Axonal Transport, Phase-Separated Compartments, and Neuron Mechanics - A New Approach to Investigate Neurodegenerative Diseases. Front Cell Neurosci 2018; 12:358. [PMID: 30356682 PMCID: PMC6189317 DOI: 10.3389/fncel.2018.00358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/24/2018] [Indexed: 01/07/2023] Open
Abstract
Many molecular and cellular pathogenic mechanisms of neurodegenerative diseases have been revealed. However, it is unclear what role a putatively impaired neuronal transport with respect to altered mechanical properties of neurons play in the initiation and progression of such diseases. The biochemical aspects of intracellular axonal transport, which is important for molecular movements through the cytoplasm, e.g., mitochondrial movement, has already been studied. Interestingly, transport deficiencies are associated with the emergence of the affliction and potentially linked to disease transmission. Transport along the axon depends on the normal function of the neuronal cytoskeleton, which is also a major contributor to neuronal mechanical properties. By contrast, little attention has been paid to the mechanical properties of neurons and axons impaired by neurodegeneration, and of membraneless, phase-separated organelles such as stress granules (SGs) within neurons. Mechanical changes may indicate cytoskeleton reorganization and function, and thus give information about the transport and other system impairment. Nowadays, several techniques to investigate cellular mechanical properties are available. In this review, we discuss how select biophysical methods to probe material properties could contribute to the general understanding of mechanisms underlying neurodegenerative diseases.
Collapse
Affiliation(s)
- Martin Nötzel
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Gonzalo Rosso
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Stephanie Möllmert
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Anne Seifert
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Raimund Schlüßler
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Kyoohyun Kim
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
7
|
Martinho M, Allegro D, Huvent I, Chabaud C, Etienne E, Kovacic H, Guigliarelli B, Peyrot V, Landrieu I, Belle V, Barbier P. Two Tau binding sites on tubulin revealed by thiol-disulfide exchanges. Sci Rep 2018; 8:13846. [PMID: 30218010 PMCID: PMC6138654 DOI: 10.1038/s41598-018-32096-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/14/2018] [Indexed: 01/25/2023] Open
Abstract
Tau is a Microtubule-associated protein that induces and stabilizes the formation of the Microtubule cytoskeleton and plays an important role in neurodegenerative diseases. The Microtubules binding region of Tau has been determined for a long time but where and how Tau binds to its partner still remain a topic of debate. We used Site Directed Spin Labeling combined with EPR spectroscopy to monitor Tau upon binding to either Taxol-stabilized MTs or to αβ-tubulin when Tau is directly used as an inducer of MTs formation. Using maleimide-functionalized labels grafted on the two natural cysteine residues of Tau, we found in both cases that Tau remains highly flexible in these regions confirming the fuzziness of Tau:MTs complexes. More interestingly, using labels linked by a disulfide bridge, we evidenced for the first time thiol disulfide exchanges between αβ-tubulin or MTs and Tau. Additionally, Tau fragments having the two natural cysteines or variants containing only one of them were used to determine the role of each cysteine individually. The difference observed in the label release kinetics between preformed MTs or Tau-induced MTs, associated to a comparison of structural data, led us to propose two putative binding sites of Tau on αβ-tubulin.
Collapse
Affiliation(s)
- Marlène Martinho
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Diane Allegro
- Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France
| | | | - Charlotte Chabaud
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France.,Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France
| | - Emilien Etienne
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Hervé Kovacic
- Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France
| | - Bruno Guigliarelli
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Vincent Peyrot
- Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France
| | | | - Valérie Belle
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France.
| | - Pascale Barbier
- Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France.
| |
Collapse
|
8
|
Hess H, Ross JL. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 2017; 46:5570-5587. [PMID: 28329028 PMCID: PMC5603359 DOI: 10.1039/c7cs00030h] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.
Collapse
Affiliation(s)
- H Hess
- Department of Biomedical Engineering, Columbia University, USA.
| | | |
Collapse
|
9
|
Duan AR, Jonasson EM, Alberico EO, Li C, Scripture JP, Miller RA, Alber MS, Goodson HV. Interactions between Tau and Different Conformations of Tubulin: Implications for Tau Function and Mechanism. J Mol Biol 2017; 429:1424-1438. [PMID: 28322917 DOI: 10.1016/j.jmb.2017.03.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/22/2017] [Accepted: 03/12/2017] [Indexed: 11/16/2022]
Abstract
Tau is a multifaceted neuronal protein that stabilizes microtubules (MTs), but the mechanism of this activity remains poorly understood. Questions include whether Tau binds MTs laterally or longitudinally and whether Tau's binding affinity depends on the nucleotide state of tubulin. We observed that Tau binds tightly to Dolastatin-10 tubulin rings and promotes the formation of Dolastatin-10 ring stacks, implying that Tau can crosslink MT protofilaments laterally. In addition, we found that Tau prefers GDP-like tubulin conformations, which implies that Tau binding to the MT surface is biased away from the dynamic GTP-rich MT tip. To investigate the potential impact of these Tau activities on MT stabilization, we incorporated them into our previously developed dimer-scale computational model of MT dynamics. We found that lateral crosslinking activities have a much greater effect on MT stability than do longitudinal crosslinking activities, and that introducing a bias toward GDP tubulin has little impact on the observed MT stabilization. To address the question of why Tau is GDP-tubulin-biased, we tested whether Tau might affect MT binding of the +TIP EB1. We confirmed recent reports that Tau binds directly to EB1 and that Tau competes with EB1 for MT binding. Our results lead to a conceptual model where Tau stabilizes the MT lattice by strengthening lateral interactions between protofilaments. We propose that Tau's GDP preference allows the cell to independently regulate the dynamics of the MT tip and the stability of the lattice.
Collapse
Affiliation(s)
- Aranda R Duan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Erin M Jonasson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Emily O Alberico
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chunlei Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jared P Scripture
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rachel A Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mark S Alber
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Mathematics, University of California, Riverside, CA 92521, USA
| | - Holly V Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
10
|
Choi MC, Chung PJ, Song C, Miller HP, Kiris E, Li Y, Wilson L, Feinstein SC, Safinya CR. Paclitaxel suppresses Tau-mediated microtubule bundling in a concentration-dependent manner. Biochim Biophys Acta Gen Subj 2016; 1861:3456-3463. [PMID: 27632200 DOI: 10.1016/j.bbagen.2016.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Microtubules (MTs) are protein nanotubes comprised of straight protofilaments (PFs), head to tail assemblies of αβ-tubulin heterodimers. Previously, it was shown that Tau, a microtubule-associated protein (MAP) localized to neuronal axons, regulates the average number of PFs in microtubules with increasing inner radius <RinMT> observed for increasing Tau/tubulin-dimer molar ratio ΦTau at paclitaxel/tubulin-dimer molar ratio ΛPtxl=1/1. METHODS We report a synchrotron SAXS and TEM study of the phase behavior of microtubules as a function of varying concentrations of paclitaxel (1/32≤ΛPtxl≤1/4) and Tau (human isoform 3RS, 0≤Φ3RS≤1/2) at room temperature. RESULTS Tau and paclitaxel have opposing regulatory effects on microtubule bundling architectures and microtubule diameter. Surprisingly and in contrast to previous results at ΛPtxl=1/1 where microtubule bundles are absent, in the lower paclitaxel concentration regime (ΛPtxl≤1/4), we observe both microtubule doublets and triplets with increasing Tau. Furthermore, increasing paclitaxel concentration (up to ΛPtxl=1/1) slightly decreased the average microtubule diameter (by ~1 PF) while increasing Tau concentration (up to Φ3RS=1/2) significantly increased the diameter (by ~2-3 PFs). CONCLUSIONS The suppression of Tau-mediated microtubule bundling with increasing paclitaxel is consistent with paclitaxel seeding more, but shorter, microtubules by rapidly exhausting tubulin available for polymerization. Microtubule bundles require the aggregate Tau-Tau attractions along the microtubule length to overcome individual microtubule thermal energies disrupting bundles. GENERAL SIGNIFICANCE Investigating MAP-mediated interactions between microtubules (as it relates to in vivo behavior) requires the elimination or minimization of paclitaxel.
Collapse
Affiliation(s)
- Myung Chul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Peter J Chung
- Materials Department, Physics Department, Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Chaeyeon Song
- Materials Department, Physics Department, Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Herbert P Miller
- Neuroscience Research Institute and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - E Kiris
- Neuroscience Research Institute and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Leslie Wilson
- Neuroscience Research Institute and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Stuart C Feinstein
- Neuroscience Research Institute and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R Safinya
- Materials Department, Physics Department, Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
11
|
NMR Meets Tau: Insights into Its Function and Pathology. Biomolecules 2016; 6:biom6020028. [PMID: 27338491 PMCID: PMC4919923 DOI: 10.3390/biom6020028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/02/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
In this review, we focus on what we have learned from Nuclear Magnetic Resonance (NMR) studies on the neuronal microtubule-associated protein Tau. We consider both the mechanistic details of Tau: the tubulin relationship and its aggregation process. Phosphorylation of Tau is intimately linked to both aspects. NMR spectroscopy has depicted accurate phosphorylation patterns by different kinases, and its non-destructive character has allowed functional assays with the same samples. Finally, we will discuss other post-translational modifications of Tau and its interaction with other cellular factors in relationship to its (dys)function.
Collapse
|
12
|
Stangner T, Angioletti-Uberti S, Knappe D, Singer D, Wagner C, Hoffmann R, Kremer F. Epitope mapping of monoclonal antibody HPT-101: a study combining dynamic force spectroscopy, ELISA and molecular dynamics simulations. Phys Biol 2015; 12:066018. [PMID: 26689558 DOI: 10.1088/1478-3975/12/6/066018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By combining enzyme-linked immunosorbent assay (ELISA) and optical tweezers-assisted dynamic force spectroscopy (DFS), we identify for the first time the binding epitope of the phosphorylation-specific monoclonal antibody (mAb) HPT-101 to the Alzheimer's disease relevant peptide tau[pThr231/pSer235] on the level of single amino acids. In particular, seven tau isoforms are synthesized by replacing binding relevant amino acids by a neutral alanine (alanine scanning). From the binding between mAb HPT-101 and the alanine-scan derivatives, we extract specific binding parameters such as bond lifetime τ0, binding length x(ts), free energy of activation ΔG (DFS) and affinity constant K(a) (ELISA, DFS). Based on these quantities, we propose criteria to identify essential, secondary and non-essential amino acids, being representative of the antibody binding epitope. The obtained results are found to be in full accord for both experimental techniques. In order to elucidate the microscopic origin of the change in binding parameters, we perform molecular dynamics (MD) simulations of the free epitope in solution for both its parent and modified form. By taking the end-to-end distance d(E-E) and the distance between the α-carbons d(C-C) of the phosphorylated residues as gauging parameters, we measure how the structure of the epitope depends on the type of substitution. In particular, whereas d(C-C) is sometimes conserved between the parent and modified form, d(E-E) strongly changes depending on the type of substitution, correlating well with the experimental data. These results are highly significant, offering a detailed microscopic picture of molecular recognition.
Collapse
Affiliation(s)
- Tim Stangner
- Leipzig University, Department of Experimental Physics I, Linnéstraβe 5, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Kabir AMR, Inoue D, Afrin T, Mayama H, Sada K, Kakugo A. Buckling of Microtubules on a 2D Elastic Medium. Sci Rep 2015; 5:17222. [PMID: 26596905 PMCID: PMC4657045 DOI: 10.1038/srep17222] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/27/2015] [Indexed: 01/24/2023] Open
Abstract
We have demonstrated compression stress induced mechanical deformation of microtubules (MTs) on a two-dimensional elastic medium and investigated the role of compression strain, strain rate, and a MT-associated protein in the deformation of MTs. We show that MTs, supported on a two-dimensional substrate by a MT-associated protein kinesin, undergo buckling when they are subjected to compression stress. Compression strain strongly affects the extent of buckling, although compression rate has no substantial effect on the buckling of MTs. Most importantly, the density of kinesin is found to play the key role in determining the buckling mode of MTs. We have made a comparison between our experimental results and the ‘elastic foundation model’ that theoretically predicts the buckling behavior of MTs and its connection to MT-associated proteins. Taking into consideration the role of kinesin in altering the mechanical property of MTs, we are able to explain the buckling behavior of MTs by the elastic foundation model. This work will help understand the buckling mechanism of MTs and its connection to MT-associated proteins or surrounding medium, and consequently will aid in obtaining a meticulous scenario of the compression stress induced deformation of MTs in cells.
Collapse
Affiliation(s)
| | - Daisuke Inoue
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tanjina Afrin
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
14
|
Chung PJ, Choi MC, Miller HP, Feinstein HE, Raviv U, Li Y, Wilson L, Feinstein SC, Safinya CR. Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules. Proc Natl Acad Sci U S A 2015; 112:E6416-25. [PMID: 26542680 PMCID: PMC4664379 DOI: 10.1073/pnas.1513172112] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Microtubules (MTs) are hollow cytoskeletal filaments assembled from αβ-tubulin heterodimers. Tau, an unstructured protein found in neuronal axons, binds to MTs and regulates their dynamics. Aberrant Tau behavior is associated with neurodegenerative dementias, including Alzheimer's. Here, we report on a direct force measurement between paclitaxel-stabilized MTs coated with distinct Tau isoforms by synchrotron small-angle X-ray scattering (SAXS) of MT-Tau mixtures under osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the physiological submonolayer regime (Tau/tubulin-dimer molar ratio; ΦTau = 1/10), isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs, preventing bundling up to PB ∼ 10,000-20,000 Pa, an order of magnitude larger than bare MTs. Tau with short NTTs showed little additional effect in suppressing the bundling pressure (PB ∼ 1,000-2,000 Pa) over the same range. Remarkably, the abrupt increase in PB observed for longer isoforms suggests a mushroom to brush transition occurring at 1/13 < ΦTau < 1/10, which corresponds to MT-bound Tau with NTTs that are considerably more extended than SAXS data for Tau in solution indicate. Modeling of Tau-mediated MT-MT interactions supports the hypothesis that longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher pressures resulted in isoform-independent irreversible bundling because the polyampholytic nature of Tau leads to short-range attractions. These findings suggest an isoform-dependent biological role for regulation by Tau, with longer isoforms conferring MT steric stabilization against aggregation either with other biomacromolecules or into tight bundles, preventing loss of function in the crowded axon environment.
Collapse
Affiliation(s)
- Peter J Chung
- Materials Department, University of California, Santa Barbara, CA 93106; Physics Department, University of California, Santa Barbara, CA 93106; Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Herbert P Miller
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
| | - H Eric Feinstein
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
| | - Uri Raviv
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106
| | - Leslie Wilson
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
| | - Stuart C Feinstein
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, CA 93106; Physics Department, University of California, Santa Barbara, CA 93106; Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106;
| |
Collapse
|
15
|
Lopez BJ, Valentine MT. Molecular control of stress transmission in the microtubule cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [PMID: 26225932 DOI: 10.1016/j.bbamcr.2015.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this article, we will summarize recent progress in understanding the mechanical origins of rigidity, strength, resiliency and stress transmission in the MT cytoskeleton using reconstituted networks formed from purified components. We focus on the role of network architecture, crosslinker compliance and dynamics, and molecular determinants of single filament elasticity, while highlighting open questions and future directions for this work.
Collapse
Affiliation(s)
- Benjamin J Lopez
- Department of Mechanical Engineering and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5070, USA
| | - Megan T Valentine
- Department of Mechanical Engineering and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5070, USA.
| |
Collapse
|
16
|
Kadavath H, Jaremko M, Jaremko Ł, Biernat J, Mandelkow E, Zweckstetter M. Faltungszustand des Proteins Tau bei Bindung an Mikrotubuli. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Kadavath H, Jaremko M, Jaremko Ł, Biernat J, Mandelkow E, Zweckstetter M. Folding of the Tau Protein on Microtubules. Angew Chem Int Ed Engl 2015; 54:10347-51. [PMID: 26094605 DOI: 10.1002/anie.201501714] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Indexed: 11/06/2022]
Abstract
Microtubules are regulated by microtubule-associated proteins. However, little is known about the structure of microtubule-associated proteins in complex with microtubules. Herein we show that the microtubule-associated protein Tau, which is intrinsically disordered in solution, locally folds into a stable structure upon binding to microtubules. While Tau is highly flexible in solution and adopts a β-sheet structure in amyloid fibrils, in complex with microtubules the conserved hexapeptides at the beginning of the Tau repeats two and three convert into a hairpin conformation. Thus, binding to microtubules stabilizes a unique conformation in Tau.
Collapse
Affiliation(s)
- Harindranath Kadavath
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen (Germany).,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen (Germany).,Center for the Molecular Physiology of the Brain, University Medical Center, Göttingen (Germany)
| | - Mariusz Jaremko
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen (Germany).,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen (Germany).,Center for the Molecular Physiology of the Brain, University Medical Center, Göttingen (Germany)
| | - Łukasz Jaremko
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen (Germany).,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen (Germany).,Center for the Molecular Physiology of the Brain, University Medical Center, Göttingen (Germany)
| | - Jacek Biernat
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) & CAESAR Research Center, Ludwig-Erhard-Allee 2, Bonn (Germany)
| | - Eckhard Mandelkow
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) & CAESAR Research Center, Ludwig-Erhard-Allee 2, Bonn (Germany)
| | - Markus Zweckstetter
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen (Germany). .,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen (Germany). .,Center for the Molecular Physiology of the Brain, University Medical Center, Göttingen (Germany).
| |
Collapse
|
18
|
Ahmadzadeh H, Smith DH, Shenoy VB. Viscoelasticity of tau proteins leads to strain rate-dependent breaking of microtubules during axonal stretch injury: predictions from a mathematical model. Biophys J 2014; 106:1123-33. [PMID: 24606936 DOI: 10.1016/j.bpj.2014.01.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022] Open
Abstract
The unique viscoelastic nature of axons is thought to underlie selective vulnerability to damage during traumatic brain injury. In particular, dynamic loading of axons has been shown to mechanically break microtubules at the time of injury. However, the mechanism of this rate-dependent response has remained elusive. Here, we present a microstructural model of the axonal cytoskeleton to quantitatively elucidate the interaction between microtubules and tau proteins under mechanical loading. Mirroring the axon ultrastructure, the microtubules were arranged in staggered arrays, cross-linked by tau proteins. We found that the viscoelastic behavior specifically of tau proteins leads to mechanical breaking of microtubules at high strain rates, whereas extension of tau allows for reversible sliding of microtubules without any damage at small strain rates. Based on the stiffness and viscosity of tau proteins inferred from single-molecule force spectroscopy studies, we predict the critical strain rate for microtubule breaking to be in the range 22-44 s(-1), in excellent agreement with recent experiments on dynamic loading of micropatterned neuronal cultures. We also identified a characteristic length scale for load transfer that depends on microstructural properties and have derived a phase diagram in the parameter space spanned by loading rate and microtubule length that demarcates those regions where axons can be loaded and unloaded reversibly and those where axons are injured due to breaking of the microtubules.
Collapse
Affiliation(s)
- Hossein Ahmadzadeh
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair and Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
19
|
Gigant B, Landrieu I, Fauquant C, Barbier P, Huvent I, Wieruszeski JM, Knossow M, Lippens G. Mechanism of Tau-promoted microtubule assembly as probed by NMR spectroscopy. J Am Chem Soc 2014; 136:12615-23. [PMID: 25162583 DOI: 10.1021/ja504864m] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Determining the molecular mechanism of the neuronal Tau protein in the tubulin heterodimer assembly has been a challenge owing to the dynamic character of the complex and the large size of microtubules. We use here defined constructs comprising one or two tubulin heterodimers to characterize their association with a functional fragment of Tau, named TauF4. TauF4 binds with high affinities to the tubulin heterodimer complexes, but NMR spectroscopy shows that it remains highly dynamic, partly because of the interaction with the acidic C-terminal tails of the tubulin monomers. When bound to a single tubulin heterodimer, TauF4 is characterized by an overhanging peptide corresponding to the first of the four microtubule binding repeats of Tau. This peptide becomes immobilized in the complex with two longitudinally associated tubulin heterodimers. The longitudinal associations are favored by the fragment and contribute to Tau's functional role in microtubule assembly.
Collapse
Affiliation(s)
- Benoît Gigant
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, Centre National de la Recherche Scientifique , 91198 Gif sur Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Scholz T, Mandelkow E. Transport and diffusion of Tau protein in neurons. Cell Mol Life Sci 2014; 71:3139-50. [PMID: 24687422 PMCID: PMC11113808 DOI: 10.1007/s00018-014-1610-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/20/2014] [Accepted: 03/13/2014] [Indexed: 12/11/2022]
Abstract
In highly polarized and elongated cells such as neurons, Tau protein must enter and move down the axon to fulfill its biological task of stabilizing axonal microtubules. Therefore, cellular systems for distributing Tau molecules are needed. This review discusses different mechanisms that have been proposed to contribute to the dispersion of Tau molecules in neurons. They include (1) directed transport along microtubules as cargo of tubulin complexes and/or motor proteins, (2) diffusion, either through the cytosolic space or along microtubules, and (3) mRNA-based mechanisms such as transport of Tau mRNA into axons and local translation. Diffusion along the microtubule lattice or through the cytosol appear to be the major mechanisms for axonal distribution of Tau protein in the short-to-intermediate range over distances of up to a millimetre. The high diffusion coefficients ensure that Tau can distribute evenly throughout the axonal volume as well as along microtubules. Motor protein-dependent transport of Tau dominates over longer distances and time scales. At low near-physiological levels, Tau is co-transported along with short microtubules from cell bodies into axons by cytoplasmic dynein and kinesin family members at rates of slow axonal transport.
Collapse
Affiliation(s)
- Tim Scholz
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany,
| | | |
Collapse
|
21
|
Kabir AMR, Inoue D, Hamano Y, Mayama H, Sada K, Kakugo A. Biomolecular Motor Modulates Mechanical Property of Microtubule. Biomacromolecules 2014; 15:1797-805. [DOI: 10.1021/bm5001789] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Hiroyuki Mayama
- Department
of Chemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | | | | |
Collapse
|
22
|
Zhang J, Wang C. Molecular structural mechanics model for the mechanical properties of microtubules. Biomech Model Mechanobiol 2014; 13:1175-84. [DOI: 10.1007/s10237-014-0564-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/20/2014] [Indexed: 11/24/2022]
|
23
|
Stangner T, Wagner C, Singer D, Angioletti-Uberti S, Gutsche C, Dzubiella J, Hoffmann R, Kremer F. Determining the specificity of monoclonal antibody HPT-101 to tau-peptides with optical tweezers. ACS NANO 2013; 7:11388-11396. [PMID: 24279833 DOI: 10.1021/nn405303u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Optical tweezers-assisted dynamic force spectroscopy is employed to investigate specific receptor-ligand interactions on the level of single binding events. In particular, we analyze binding of the phosphorylation-specific monoclonal antibody (mAb) HPT-101 to synthetic tau-peptides with two potential phosphorylation sites (Thr231 and Ser235), being the most probable markers for Alzheimer's disease. Whereas the typical interpretation of enzyme-linked immunosorbent assay (ELISA) suggests that this monoclonal antibody binds exclusively to the double-phosphorylated tau-peptide, we show here by DFS that the specificity of only mAb HPT-101 is apparent. In fact, binding occurs also to each sort of monophosphorylated peptide. Therefore, we characterize the unbinding process by analyzing the measured rupture force distributions, from which the lifetime of the bond without force τ0, its characteristic length xts, and the free energy of activation ΔG are extracted for the three mAb/peptide combinations. This information is used to build a simple theoretical model to predict features of the unbinding process for the double-phosphorylated peptide purely based on data on the monophosphorylated ones. Finally, we introduce a method to combine binding and unbinding measurements to estimate the relative affinity of the bonds. The values obtained for this quantity are in accordance with ELISA, showing how DFS can offer important insights about the dynamic binding process that are not accessible with this common and widespread assay.
Collapse
Affiliation(s)
- Tim Stangner
- Department of Experimental Physics I, Leipzig University , Linnéstraße 5, D-04103 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bodensiek K, Li W, Sánchez P, Nawaz S, Schaap IAT. A high-speed vertical optical trap for the mechanical testing of living cells at piconewton forces. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:113707. [PMID: 24289404 DOI: 10.1063/1.4832036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although atomic force microscopy is often the method of choice to probe the mechanical response of (sub)micrometer sized biomaterials, the lowest force that can be reliably controlled is limited to ≈0.1 nN. For soft biological samples, like cells, such forces can already lead to a strain large enough to enter the non-elastic deformation regime. To be able to investigate the response of single cells at lower forces we developed a vertical optical trap. The force can be controlled down to single piconewtons and most of the advantages of atomic force microscopy are maintained, such as the symmetrical application of forces at a wide range of loading rates. Typical consequences of moving the focus in the vertical direction, like the interferometric effect between the bead and the coverslip and a shift of focus, were quantified and found to have negligible effects on our measurements. With a fast responding force feedback loop we can achieve deformation rates as high as 50 μm/s, which allow the investigation of the elastic and viscous components of very soft samples. The potential of the vertical optical trap is demonstrated by measuring the linearity of the response of single cells at very low forces and a high bandwidth of deformation rates.
Collapse
Affiliation(s)
- Kai Bodensiek
- III. Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
| | | | | | | | | |
Collapse
|
25
|
Hawkins TL, Sept D, Mogessie B, Straube A, Ross JL. Mechanical properties of doubly stabilized microtubule filaments. Biophys J 2013; 104:1517-28. [PMID: 23561528 DOI: 10.1016/j.bpj.2013.02.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 01/13/2013] [Accepted: 02/19/2013] [Indexed: 11/28/2022] Open
Abstract
Microtubules are cytoskeletal filaments responsible for cell morphology and intracellular organization. Their dynamical and mechanical properties are regulated through the nucleotide state of the tubulin dimers and the binding of drugs and/or microtubule-associated proteins. Interestingly, microtubule-stabilizing factors have differential effects on microtubule mechanics, but whether stabilizers have cumulative effects on mechanics or whether one effect dominates another is not clear. This is especially important for the chemotherapeutic drug Taxol, an important anticancer agent and the only known stabilizer that reduces the rigidity of microtubules. First, we ask whether Taxol will combine additively with another stabilizer or whether one stabilizer will dominate another. We call microtubules in the presence of Taxol and another stabilizer, doubly stabilized. Second, since Taxol is often added to a number of cell types for therapeutic purposes, it is important from a biomedical perspective to understand how Taxol added to these systems affects the mechanical properties in treated cells. To address these questions, we use the method of freely fluctuating filaments with our recently developed analysis technique of bootstrapping to determine the distribution of persistence lengths of a large population of microtubules treated with different stabilizers, including Taxol, guanosine-5' [(α, β)-methyleno] triphosphate, guanosine-5'-O-(3-thiotriphosphate), tau, and MAP4. We find that combinations of these stabilizers have novel effects on the mechanical properties of microtubules.
Collapse
Affiliation(s)
- Taviare L Hawkins
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | | | | | | | |
Collapse
|
26
|
Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2013; 2:a006247. [PMID: 22762014 DOI: 10.1101/cshperspect.a006247] [Citation(s) in RCA: 541] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tau represents the subunit protein of one of the major hallmarks of Alzheimer disease (AD), the neurofibrillary tangles, and is therefore of major interest as an indicator of disease mechanisms. Many of the unusual properties of Tau can be explained by its nature as a natively unfolded protein. Examples are the large number of structural conformations and biochemical modifications (phosphorylation, proteolysis, glycosylation, and others), the multitude of interaction partners (mainly microtubules, but also other cytoskeletal proteins, kinases, and phosphatases, motor proteins, chaperones, and membrane proteins). The pathological aggregation of Tau is counterintuitive, given its high solubility, but can be rationalized by short hydrophobic motifs forming β structures. The aggregation of Tau is toxic in cell and animal models, but can be reversed by suppressing expression or by aggregation inhibitors. This review summarizes some of the structural, biochemical, and cell biological properties of Tau and Tau fibers. Further aspects of Tau as a diagnostic marker and therapeutic target, its involvement in other Tau-based diseases, and its histopathology are covered by other chapters in this volume.
Collapse
Affiliation(s)
- Eva-Maria Mandelkow
- Max-Planck Unit for Structural Molecular Biology, c/o DESY, 22607 Hamburg, Germany; DZNE, German Center for Neurodegenerative Diseases, and CAESAR Research Center, 53175 Bonn, Germany.
| | | |
Collapse
|
27
|
Philip JT, Duan AR, Alberico EO, Goodson HV. Using MTBindingSim as a tool for experimental planning and interpretation. Methods Cell Biol 2013; 115:375-84. [PMID: 23973084 PMCID: PMC6938681 DOI: 10.1016/b978-0-12-407757-7.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
MTBindingSim is a program that enables users to simulate experiments in which proteins or other ligands (e.g., drugs) bind to microtubules or other polymers under various binding models. The purpose of MTBindingSim is to help researchers and students gain an intuitive understanding of binding behavior and design experiments to distinguish between different binding mechanisms. MTBindingSim is open-source, freely available software and can be found at bindingtutor.org/mtbindingsim. This chapter first describes the capabilities of MTBindingSim, including the experimental designs and protein-binding models that it simulates, and then discusses two examples in which MTBindingSim is utilized in an experimental context. In the first, MTBindingSim is used to investigate potential explanations for unusual behavior observed in the binding of the neuronal protein Tau to microtubules, demonstrating that some potential explanations are incompatible with the experimental data. In the second example, MTBindingSim is used to design experiments to examine the question of whether the plus-end tracking protein EB1 binds preferentially to the microtubule seam.
Collapse
Affiliation(s)
- Julia T Philip
- Department of Chemistry and Biochemistry, Interdisciplinary Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, Indiana, USA
| | | | | | | |
Collapse
|
28
|
Duan AR, Goodson HV. Taxol-stabilized microtubules promote the formation of filaments from unmodified full-length Tau in vitro. Mol Biol Cell 2012; 23:4796-806. [PMID: 23087208 PMCID: PMC3521687 DOI: 10.1091/mbc.e12-05-0374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tau is a neuronal protein that stabilizes the microtubule (MT) network, but it also forms filaments associated with Alzheimer's disease. Understanding Tau-MT and Tau-Tau interactions would help to establish Tau function in health and disease. For many years, literature reports on Tau-MT binding behavior and affinity have remained surprisingly contradictory (e.g., 10-fold variation in Tau-MT affinity). Tau-Tau interactions have also been investigated, but whether MTs might affect Tau filament formation is unknown. We have addressed these issues through binding assays and microscopy. We assessed Tau-MT interactions via cosedimentation and found that the measured affinity of Tau varies greatly, depending on the experimental design and the protein concentrations used. To investigate this dependence, we used fluorescence microscopy to examine Tau-MT binding. Strikingly, we found that Taxol-stabilized MTs promote Tau filament formation without characterized Tau-filament inducers. We propose that these novel Tau filaments account for the incongruence in Tau-MT affinity measurements. Moreover, electron microscopy reveals that these filaments appear similar to the heparin-induced Alzheimer's model. These observations suggest that the MT-induced Tau filaments provide a new model for Alzheimer's studies and that MTs might play a role in the formation of Alzheimer's-associated neurofibrillary tangles.
Collapse
Affiliation(s)
- Aranda R Duan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
29
|
Tsvetkov PO, Makarov AA, Malesinski S, Peyrot V, Devred F. New insights into tau–microtubules interaction revealed by isothermal titration calorimetry. Biochimie 2012; 94:916-9. [DOI: 10.1016/j.biochi.2011.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/14/2011] [Indexed: 11/25/2022]
|
30
|
Schaap IAT, Carrasco C, de Pablo PJ, Schmidt CF. Kinesin walks the line: single motors observed by atomic force microscopy. Biophys J 2011; 100:2450-6. [PMID: 21575579 DOI: 10.1016/j.bpj.2011.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 12/14/2022] Open
Abstract
Motor proteins of the kinesin family move actively along microtubules to transport cargo within cells. How exactly a single motor proceeds on the 13 narrow lanes or protofilaments of a microtubule has not been visualized directly, and there persists controversy on the relative position of the two kinesin heads in different nucleotide states. We have succeeded in imaging Kinesin-1 dimers immobilized on microtubules with single-head resolution by atomic force microscopy. Moreover, we could catch glimpses of single Kinesin-1 dimers in their motion along microtubules with nanometer resolution. We find in our experiments that frequently both heads of one dimer are microtubule-bound at submicromolar ATP concentrations. Furthermore, we could unambiguously resolve that both heads bind to the same protofilament, instead of straddling two, and remain on this track during processive movement.
Collapse
Affiliation(s)
- Iwan A T Schaap
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, de Boelelaan, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
31
|
Ji XY, Feng XQ. Coarse-grained mechanochemical model for simulating the dynamic behavior of microtubules. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031933. [PMID: 22060429 DOI: 10.1103/physreve.84.031933] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 08/08/2011] [Indexed: 05/31/2023]
Abstract
Modeling the structure and mechanics of microtubules, which play significant roles in various physiological functions of cells, has long been a fascinating issue. In this paper, a coarse-grained mechanochemical model is presented to study the mechanical-chemical coupling and dynamic attributes of microtubules. The interactions among tubulins are taken into account from the molecular basis. This model is used to characterize the conformations of sheet-ended microtubules, to analyze the distributions of interaction energy, and further to simulate the radial indentation process of a microtubule. This method also works for investigating the dynamic properties of microtubules, e.g., their assembly, growth, deformation, and structural evolution for different conditions. This study is helpful for understanding the structure-mechanics-function relationship of microtubules and lays a foundation for further investigation of their dynamic behavior.
Collapse
Affiliation(s)
- Xiang-Ying Ji
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
32
|
Wegmann S, Schöler J, Bippes CA, Mandelkow E, Muller DJ. Competing interactions stabilize pro- and anti-aggregant conformations of human Tau. J Biol Chem 2011; 286:20512-24. [PMID: 21498513 DOI: 10.1074/jbc.m111.237875] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aggregation of Tau into amyloid-like fibrils is a key process in neurodegenerative diseases such as Alzheimer. To understand how natively disordered Tau stabilizes conformations that favor pathological aggregation, we applied single-molecule force spectroscopy. Intramolecular interactions that fold polypeptide stretches of ~19 and ~42 amino acids in the functionally important repeat domain of full-length human Tau (hTau40) support aggregation. In contrast, the unstructured N terminus randomly folds long polypeptide stretches >100 amino acids that prevent aggregation. The pro-aggregant mutant hTau40ΔK280 observed in frontotemporal dementia favored the folding of short polypeptide stretches and suppressed the folding of long ones. This trend was reversed in the anti-aggregant mutant hTau40ΔK280/PP. The aggregation inducer heparin introduced strong interactions in hTau40 and hTau40ΔK280 that stabilized aggregation-prone conformations. We show that the conformation and aggregation of Tau are regulated through a complex balance of different intra- and intermolecular interactions.
Collapse
Affiliation(s)
- Susanne Wegmann
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Veigel C, Schmidt CF. Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat Rev Mol Cell Biol 2011; 12:163-76. [PMID: 21326200 DOI: 10.1038/nrm3062] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Much has been learned in the past decades about molecular force generation. Single-molecule techniques, such as atomic force microscopy, single-molecule fluorescence microscopy and optical tweezers, have been key in resolving the mechanisms behind the power strokes, 'processive' steps and forces of cytoskeletal motors. However, it remains unclear how single force generators are integrated into composite mechanical machines in cells to generate complex functions such as mitosis, locomotion, intracellular transport or mechanical sensory transduction. Using dynamic single-molecule techniques to track, manipulate and probe cytoskeletal motor proteins will be crucial in providing new insights.
Collapse
Affiliation(s)
- Claudia Veigel
- Department of Cellular Physiology, Institute of Physiology, Ludwig-Maximilians-Universität München, Schillerstrasse 44, 80336 München, Germany.
| | | |
Collapse
|
34
|
Eghiaian F, Schaap IAT. Structural and dynamic characterization of biochemical processes by atomic force microscopy. Methods Mol Biol 2011; 778:71-95. [PMID: 21809201 DOI: 10.1007/978-1-61779-261-8_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Atomic Force Microscopy (AFM) has gained increasing popularity over the years among biophysicists due to its ability to image and to measure pN to nN forces on biologically relevant scales (nm to μm). Continuous technical developments have made AFM capable of nondisruptive, subsecond imaging of fragile biological samples in a liquid environment, making this method a potent alternative to light microscopy. In this chapter, we discuss the basics of AFM, its theoretical limitations, and we describe how this technique can be used to get single protein resolution in liquids at room temperature. Provided imaging is done at low-enough forces to avoid sample disruption and conformational changes, AFM allows obtaining unique insights into enzyme dynamics.
Collapse
Affiliation(s)
- Frédéric Eghiaian
- Drittes Physikalisches Institut, Georg August Universität, Göttingen, Germany
| | | |
Collapse
|
35
|
Donhauser ZJ, Jobs WB, Binka EC. Mechanics of microtubules: effects of protofilament orientation. Biophys J 2010; 99:1668-75. [PMID: 20816081 DOI: 10.1016/j.bpj.2010.06.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 06/18/2010] [Accepted: 06/25/2010] [Indexed: 11/16/2022] Open
Abstract
Microtubules are hollow cylindrical polymers of the protein tubulin that play a number of important dynamic and structural roles in eukaryotic cells. Both in vivo and in vitro microtubules can exist in several possible configurations, differing in the number of protofilaments, helical rise of tubulin dimers, and protofilament skew angle with respect to the main tube axis. Here, finite element modeling is applied to examine the mechanical response of several known microtubule types when subjected to radial deformation. The data presented here provide an important insight into microtubule stiffness and reveal that protofilament orientation does not affect radial stiffness. Rather, stiffness is primarily dependent on the effective Young's modulus of the polymerized material and the effective radius of the microtubule. These results are also directly correlated to atomic force microscopy nanoindentation measurements to allow a more detailed interpretation of previous experiments. When combined with experimental data that show a significant difference between microtubules stabilized with a slowly hydrolyzable GTP analog and microtubules stabilized with paclitaxel, the finite element data suggest that paclitaxel increases the overall radial flexibility of the microtubule wall.
Collapse
|
36
|
Kawaguchi K, Yamaguchi A. Temperature dependence rigidity of non-taxol stabilized single microtubules. Biochem Biophys Res Commun 2010; 402:66-9. [PMID: 20920471 DOI: 10.1016/j.bbrc.2010.09.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/28/2010] [Indexed: 12/27/2022]
Abstract
Because microtubules are the structural elements of cells, it is essential to study the mechanical properties of single microtubules under physiological conditions. Previously, we measured the effect of temperature on the flexural rigidity of a single taxol-stabilized microtubule and found that the flexural rigidity is 2.5×10(-24)Nm(2), independent of temperature in the 20-35°C range. Employing the same technique here, we have measured the flexural rigidity of microtubules polymerized in the presence of guanylyl-(a,b)-methylene-diphosphonate (GMPCPP, the slowly hydrolyzable GTP analogue) and in the presence of GTP only; both of the states were taxol-free. The obtained values were approximately 5-fold (for GMPCPP) and three- to 4-fold (for GTP) greater than those of taxol-stabilized microtubules. Interestingly, rigidity decreased as temperature increased, that is, temperature dependence was only observed in taxol-free microtubules. Length dependence was also observed. These results indicate that the transition of microtubule's rigidity is associated with the tubulin conformation change from a GTP-bound state to a GDP-bound state in the α/β subunit. We discuss the relationship of the regulation mechanism of the microtubules in the cell body to the changes in rigidity through hydrolysis.
Collapse
Affiliation(s)
- Kenji Kawaguchi
- Department of Neurobiology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan.
| | | |
Collapse
|
37
|
Matrone MA, Whipple RA, Balzer EM, Martin SS. Microtentacles tip the balance of cytoskeletal forces in circulating tumor cells. Cancer Res 2010; 70:7737-41. [PMID: 20924109 DOI: 10.1158/0008-5472.can-10-1569] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Detection of circulating tumor cells (CTC) is advancing as an effective predictor of patient outcome and therapeutic response. Unfortunately, our knowledge of CTC biology remains limited, and the impact of drug treatments on CTC metastatic potential is currently unclear. Improved CTC imaging in vivo and analysis of free-floating tumor cells now show that cytoskeletal regulation in CTCs contrasts starkly with tumor cells attached to extracellular matrix. In this review, we examine how persistent microtubule stabilization promotes the formation of microtentacles on the surface of detached breast tumor cells and enhances metastatic potential.
Collapse
Affiliation(s)
- Michael A Matrone
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
38
|
Baclayon M, Roos WH, Wuite GJL. Sampling protein form and function with the atomic force microscope. Mol Cell Proteomics 2010; 9:1678-88. [PMID: 20562411 PMCID: PMC2938060 DOI: 10.1074/mcp.r110.001461] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Indexed: 12/17/2022] Open
Abstract
To study the structure, function, and interactions of proteins, a plethora of techniques is available. Many techniques sample such parameters in non-physiological environments (e.g. in air, ice, or vacuum). Atomic force microscopy (AFM), however, is a powerful biophysical technique that can probe these parameters under physiological buffer conditions. With the atomic force microscope operating under such conditions, it is possible to obtain images of biological structures without requiring labeling and to follow dynamic processes in real time. Furthermore, by operating in force spectroscopy mode, it can probe intramolecular interactions and binding strengths. In structural biology, it has proven its ability to image proteins and protein conformational changes at submolecular resolution, and in proteomics, it is developing as a tool to map surface proteomes and to study protein function by force spectroscopy methods. The power of AFM to combine studies of protein form and protein function enables bridging various research fields to come to a comprehensive, molecular level picture of biological processes. We review the use of AFM imaging and force spectroscopy techniques and discuss the major advances of these experiments in further understanding form and function of proteins at the nanoscale in physiologically relevant environments.
Collapse
Affiliation(s)
- Marian Baclayon
- From the Natuur- en Sterrenkunde and Lasercentrum, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Wouter H. Roos
- From the Natuur- en Sterrenkunde and Lasercentrum, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Gijs J. L. Wuite
- From the Natuur- en Sterrenkunde and Lasercentrum, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
39
|
Wegmann S, Jung YJ, Chinnathambi S, Mandelkow EM, Mandelkow E, Muller DJ. Human Tau isoforms assemble into ribbon-like fibrils that display polymorphic structure and stability. J Biol Chem 2010; 285:27302-27313. [PMID: 20566652 DOI: 10.1074/jbc.m110.145318] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibrous aggregates of Tau protein are characteristic features of Alzheimer disease. We applied high resolution atomic force and EM microscopy to study fibrils assembled from different human Tau isoforms and domains. All fibrils reveal structural polymorphism; the "thin twisted" and "thin smooth" fibrils resemble flat ribbons (cross-section approximately 10 x 15 nm) with diverse twist periodicities. "Thick fibrils" show periodicities of approximately 65-70 nm and thicknesses of approximately 9-18 nm such as routinely reported for "paired helical filaments" but structurally resemble heavily twisted ribbons. Therefore, thin and thick fibrils assembled from different human Tau isoforms challenge current structural models of paired helical filaments. Furthermore, all Tau fibrils reveal axial subperiodicities of approximately 17-19 nm and, upon exposure to mechanical stress or hydrophobic surfaces, disassemble into uniform fragments that remain connected by thin thread-like structures ( approximately 2 nm). This hydrophobically induced disassembly is inhibited at enhanced electrolyte concentrations, indicating that the fragments resemble structural building blocks and the fibril integrity depends largely on hydrophobic and electrostatic interactions. Because full-length Tau and repeat domain constructs assemble into fibrils of similar thickness, the "fuzzy coat" of Tau protein termini surrounding the fibril axis is nearly invisible for atomic force microscopy and EM, presumably because of its high flexibility.
Collapse
Affiliation(s)
- Susanne Wegmann
- Department of Biosystems Science and Engineering, ETH Zürich, CH-4058 Basel, Switzerland
| | - Yu Jin Jung
- Biotechnology Center, University of Technology, 01307 Dresden, Germany
| | - Subashchandrabose Chinnathambi
- Max-Planck-Unit for Structural Molecular Biology, c/o DESY, 22607 Hamburg, Germany and the German Center for Neurodegenerative Diseases, c/o CAESAR, 53175 Bonn, Germany
| | - Eva-Maria Mandelkow
- Max-Planck-Unit for Structural Molecular Biology, c/o DESY, 22607 Hamburg, Germany and the German Center for Neurodegenerative Diseases, c/o CAESAR, 53175 Bonn, Germany
| | - Eckhard Mandelkow
- Max-Planck-Unit for Structural Molecular Biology, c/o DESY, 22607 Hamburg, Germany and the German Center for Neurodegenerative Diseases, c/o CAESAR, 53175 Bonn, Germany.
| | - Daniel J Muller
- Department of Biosystems Science and Engineering, ETH Zürich, CH-4058 Basel, Switzerland.
| |
Collapse
|
40
|
Matrone MA, Whipple RA, Thompson K, Cho EH, Vitolo MI, Balzer EM, Yoon JR, Ioffe OB, Tuttle KC, Tan M, Martin SS. Metastatic breast tumors express increased tau, which promotes microtentacle formation and the reattachment of detached breast tumor cells. Oncogene 2010; 29:3217-27. [PMID: 20228842 DOI: 10.1038/onc.2010.68] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cytoskeletal organization of detached and circulating tumor cells (CTCs) is currently not well defined and may provide potential targets for new therapies to limit metastatic tumor spread. In vivo, CTCs reattach in distant tissues by a mechanism that is tubulin-dependent and suppressed by polymerized actin. The cytoskeletal mechanisms that promote reattachment of CTCs match exactly with the mechanisms supporting tubulin microtentacles (McTN), which we have recently identified in detached breast tumor cells. In this study, we aimed to investigate how McTN formation is affected by the microtubule-associated protein, tau, which is expressed in a subset of chemotherapy-resistant breast cancers. We demonstrate that endogenous tau protein localizes to McTNs and is both necessary and sufficient to promote McTN extension in detached breast tumor cells. Tau-induced McTNs increase reattachment of suspended cells and retention of CTCs in lung capillaries. Analysis of patient-matched primary and metastatic tumors reveals that 52% possess tau expression in metastases and 26% display significantly increased tau expression over disease progression. Tau enrichment in metastatic tumors and the ability of tau to promote tumor cell reattachment through McTN formation support a model in which tau-induced microtubule stabilization provides a selective advantage during tumor metastasis.
Collapse
Affiliation(s)
- M A Matrone
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hamon L, Curmi PA, Pastré D. High-resolution imaging of microtubules and cytoskeleton structures by atomic force microscopy. Methods Cell Biol 2010; 95:157-74. [PMID: 20466134 DOI: 10.1016/s0091-679x(10)95009-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Atomic force microscopy (AFM), which combines a nanometer-scale resolution and a unique capacity to image biomolecular interactions in liquid environment, is a promising tool for the investigation of biological samples. In contrast with nucleic acids and nucleoprotein complexes, for which AFM is now of common use and participates in the recent advances in the knowledge of DNA-related biomolecular processes, AFM investigations of cytoskeleton structures and especially microtubules remain rare. The most critical step to observe biomolecules using AFM is the spreading of the biological material on a flat surface. This issue is now better documented concerning DNA but a lot remains to be done concerning microtubules. This is a prerequisite to further document this issue for a proper and large use of AFM to study cytoskeleton structures. We present here an overview of the various procedures previously used to spread microtubules on a flat surface and advance an easy-to-use and efficient experimental protocol for microtubule imaging by AFM in air. We show application of this protocol to observe intermediate structures of microtubule assembly without using any stabilizing agent and the observation of more complex systems like proteins or messenger ribonucleoprotein particles in interaction with microtubules.
Collapse
Affiliation(s)
- Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM - UEVE UMR U829, Evry 91025, France
| | | | | |
Collapse
|
42
|
Abstract
Microtubules are rigid cytoskeletal filaments, and their mechanics affect cell morphology and cellular processes. For instance, microtubules for the support structures for extended morphologies, such as axons and cilia. Further, microtubules act as tension rods to pull apart chromosomes during cellular division. Unlike other cytoskeletal filaments (e.g., actin) that work as large networks, microtubules work individually or in small groups, so their individual mechanical properties are quite important to their cellular function. In this review, we explore the past work on the mechanics of individual microtubules, which have been studied for over a quarter of a century. We also present some prospective on future endeavors to determine the molecular mechanisms that control microtubule rigidity.
Collapse
|
43
|
Human microtubule-associated-protein tau regulates the number of protofilaments in microtubules: a synchrotron x-ray scattering study. Biophys J 2009; 97:519-27. [PMID: 19619466 DOI: 10.1016/j.bpj.2009.04.047] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 04/16/2009] [Accepted: 04/28/2009] [Indexed: 11/22/2022] Open
Abstract
Microtubules (MTs), a major component of the eukaryotic cytoskeleton, are 25 nm protein nanotubes with walls comprised of assembled protofilaments built from alphabeta heterodimeric tubulin. In neural cells, different isoforms of the microtubule-associated-protein (MAP) tau regulate tubulin assembly and MT stability. Using synchrotron small angle x-ray scattering (SAXS), we have examined the effects of all six naturally occurring central nervous system tau isoforms on the assembly structure of taxol-stabilized MTs. Most notably, we found that tau regulates the distribution of protofilament numbers in MTs as reflected in the observed increase in the average radius R(MT) of MTs with increasing Phi, the tau/tubulin-dimer molar ratio. Within experimental scatter, the change in R(MT) seems to be isoform independent. Significantly, R(MT) was observed to rapidly increase for 0 < Phi < 0.2 and saturate for Phi between 0.2-0.5. Thus, a local shape distortion of the tubulin dimer on tau binding, at coverages much less than a monolayer, is spread collectively over many dimers on the scale of protofilaments. This implies that tau regulates the shape of protofilaments and thus the spontaneous curvature C(o)(MT) of MTs leading to changes in the curvature C(MT) (=1/R(MT)). An important biological implication of these findings is a possible allosteric role for tau where the tau-induced shape changes of the MT surface may effect the MT binding activity of other MAPs present in neurons. Furthermore, the results, which provide insight into the regulation of the elastic properties of MTs by tau, may also impact biomaterials applications requiring radial size-controlled nanotubes.
Collapse
|
44
|
van Mameren J, Vermeulen KC, Gittes F, Schmidt CF. Leveraging single protein polymers to measure flexural rigidity. J Phys Chem B 2009; 113:3837-44. [PMID: 19673071 DOI: 10.1021/jp808328a] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The micrometer-scale length of some protein polymers allows them to be mechanically manipulated in single-molecule experiments. This provides a direct way to measure persistence length. We have used a double optical trap to elastically deform single microtubules and actin filaments. Axial extensional force was exerted on beads attached laterally to the filaments. Because the attachments are off the line of force, pulling the beads apart couples to local bending of the filament. We present a simple mechanical model for the resulting highly nonlinear elastic response of the dumbbell construct. The flexural rigidities of the microfilaments that were found by fitting the model to the experimentally observed force-distance curves are (7.1 +/- 0.8) x 10(4) pN nm2 (persistence length L(p) = 17.2 microm) for F-actin and (6.1 +/- 1.3) x 10(6) pN nm2 (L(p) = 1.4 mm) for microtubules.
Collapse
|
45
|
Tau-isoform dependent enhancement of taxol mobility through microtubules. Arch Biochem Biophys 2008; 478:119-26. [DOI: 10.1016/j.abb.2008.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 11/18/2022]
|
46
|
Kasas S, Dietler G. Probing nanomechanical properties from biomolecules to living cells. Pflugers Arch 2008; 456:13-27. [DOI: 10.1007/s00424-008-0448-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 12/27/2022]
|