1
|
Cao M, Zhang X. DNA Adductomics: A Narrative Review of Its Development, Applications, and Future. Biomolecules 2024; 14:1173. [PMID: 39334939 PMCID: PMC11430648 DOI: 10.3390/biom14091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA adductomics is the global study of all DNA adducts and was first proposed in 2006 by the Matsuda group. Its development has been greatly credited to the advances in mass spectrometric techniques, particularly tandem and multiple-stage mass spectrometry. In fact, liquid chromatography-mass spectrometry (LC-MS)-based methods are virtually the sole technique with practicality for DNA adductomic studies to date. At present, DNA adductomics is primarily used as a tool to search for DNA adducts, known and unknown, providing evidence for exposure to exogenous genotoxins and/or for the molecular mechanisms of their genotoxicity. Some DNA adducts discovered in this way have the potential to predict cancer risks and/or to be associated with adverse health outcomes. DNA adductomics has been successfully used to identify and determine exogenous carcinogens that may contribute to the etiology of certain cancers, including bacterial genotoxins and an N-nitrosamine. Also using the DNA adductomic approach, multiple DNA adducts have been observed to show age dependence and may serve as aging biomarkers. These achievements highlight the capability and power of DNA adductomics in the studies of medicine, biological science, and environmental science. Nonetheless, DNA adductomics is still in its infancy, and great advances are expected in the future.
Collapse
Affiliation(s)
- Mengqiu Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Laginha RC, Silva JD, Cinque G, Batista de Carvalho LAE, Batista de Carvalho ALM. Vibrational microspectroscopy as a tool to unveil new chemotherapeutic strategies against osteosarcoma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124389. [PMID: 38710137 DOI: 10.1016/j.saa.2024.124389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Over the years, osteosarcoma therapy has had a significative improvement with the use of a multidrug regime strategy, increasing the survival rates from less than 20 % to circa 70 %. Different types of development of new antineoplastic agents are critical to achieve irreversible damage to cancer cells, while preserving the integrity of their healthy counterparts. In the present study, complexes with two and three Pd(II) centres linked by the biogenic polyamines: spermine (Pd2SpmCl4) and spermidine (Pd3Spd2Cl6) were tested against non-malignant (osteoblasts, HOb) and cancer (osteosarcoma, MG-63) human cell lines. Either alone or in combination according to the EURAMOS-1 protocol, they were used versus cisplatin as a drug reference. By evaluating the cytotoxic effects of both therapeutic approaches (single and drug combination) in HOb and MG-63 cell lines, the selective anti-tumoral potential is assessed. To understand the different treatments at a molecular level, Synchrotron Radiation Fourier Transform Infrared and Raman microspectroscopies were applied. Principal component analysis and hierarchical cluster analysis are applied to the vibrational data, revealing the major metabolic changes caused by each drug, which were found to rely on DNA, lipids, and proteins, acting as biomarkers of drug-to-cell impact. The main changes were observed for the B-DNA native conformation to either Z-DNA (higher in the presence of polynuclear complexes) or A-DNA (preferably after cisplatin exposure). Additionally, a higher effect upon variation in proteins content was detected in drug combination when compared to single drug administration proving the efficacy of the EURAMOS-1 protocol with the new drugs tested.
Collapse
Affiliation(s)
- Raquel C Laginha
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Jéssica D Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Ana L M Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
Sofińska K, Wilkosz N, Szymoński M, Lipiec E. Molecular Spectroscopic Markers of DNA Damage. Molecules 2020; 25:E561. [PMID: 32012927 PMCID: PMC7037412 DOI: 10.3390/molecules25030561] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Every cell in a living organism is constantly exposed to physical and chemical factors which damage the molecular structure of proteins, lipids, and nucleic acids. Cellular DNA lesions are the most dangerous because the genetic information, critical for the identity and function of each eukaryotic cell, is stored in the DNA. In this review, we describe spectroscopic markers of DNA damage, which can be detected by infrared, Raman, surface-enhanced Raman, and tip-enhanced Raman spectroscopies, using data acquired from DNA solutions and mammalian cells. Various physical and chemical DNA damaging factors are taken into consideration, including ionizing and non-ionizing radiation, chemicals, and chemotherapeutic compounds. All major spectral markers of DNA damage are presented in several tables, to give the reader a possibility of fast identification of the spectral signature related to a particular type of DNA damage.
Collapse
Affiliation(s)
| | | | | | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.S.); (N.W.); or (M.S.)
| |
Collapse
|
4
|
Schmidt OP, Jurt S, Johannsen S, Karimi A, Sigel RKO, Luedtke NW. Concerted dynamics of metallo-base pairs in an A/B-form helical transition. Nat Commun 2019; 10:4818. [PMID: 31645548 PMCID: PMC6811676 DOI: 10.1038/s41467-019-12440-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/05/2019] [Indexed: 01/31/2023] Open
Abstract
Metal-mediated base pairs expand the repertoire of nucleic acid structures and dynamics. Here we report solution structures and dynamics of duplex DNA containing two all-natural C-HgII-T metallo base pairs separated by six canonical base pairs. NMR experiments reveal a 3:1 ratio of well-resolved structures in dynamic equilibrium. The major species contains two (N3)T-HgII-(N3)C base pairs in a predominantly B-form helix. The minor species contains (N3)T-HgII-(N4)C base pairs and greater A-form characteristics. Ten-fold different 1J coupling constants (15N,199Hg) are observed for (N3)C-HgII (114 Hz) versus (N4)C-HgII (1052 Hz) connectivities, reflecting differences in cytosine ionization and metal-bonding strengths. Dynamic interconversion between the two types of C-HgII-T base pairs are coupled to a global conformational exchange between the helices. These observations inspired the design of a repetitive DNA sequence capable of undergoing a global B-to-A-form helical transition upon adding HgII, demonstrating that C-HgII-T has unique switching potential in DNA-based materials and devices.
Collapse
Affiliation(s)
- Olivia P Schmidt
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Simon Jurt
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Silke Johannsen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Ashkan Karimi
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Geng J, Aioub M, El-Sayed MA, Barry BA. UV Resonance Raman Study of Apoptosis, Platinum-Based Drugs, and Human Cell Lines. Chemphyschem 2018; 19:1428-1431. [DOI: 10.1002/cphc.201800252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jiafeng Geng
- School of Chemistry and Biochemistry and the Parker H. Petit Institute of Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta, Georgia USA
| | - Mena Aioub
- School of Chemistry and Biochemistry, the Parker H. Petit Institute of Bioengineering and Bioscience, and the Laser Dynamics Laboratory; Georgia Institute of Technology; Atlanta, Georgia USA
| | - Mostafa A. El-Sayed
- School of Chemistry and Biochemistry, the Parker H. Petit Institute of Bioengineering and Bioscience, and the Laser Dynamics Laboratory; Georgia Institute of Technology; Atlanta, Georgia USA
| | - Bridgette A. Barry
- School of Chemistry and Biochemistry and the Parker H. Petit Institute of Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta, Georgia USA
| |
Collapse
|
6
|
Batista de Carvalho ALM, Pilling M, Gardner P, Doherty J, Cinque G, Wehbe K, Kelley C, Batista de Carvalho LAE, Marques MPM. Chemotherapeutic response to cisplatin-like drugs in human breast cancer cells probed by vibrational microspectroscopy. Faraday Discuss 2018; 187:273-98. [PMID: 27063935 DOI: 10.1039/c5fd00148j] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Studies of drug-cell interactions in cancer model systems are essential in the preclinical stage of rational drug design, which relies on a thorough understanding of the mechanisms underlying cytotoxic activity and biological effects, at a molecular level. This study aimed at applying complementary vibrational spectroscopy methods to evaluate the cellular impact of two Pt(ii) and Pd(ii) dinuclear chelates with spermine (Pt2Spm and Pd2Spm), using cisplatin (cis-Pt(NH3)2Cl2) as a reference compound. Their effects on cellular metabolism were monitored in a human triple-negative metastatic breast cancer cell line (MDA-MB-231) by Raman and synchrotron-radiation infrared microspectroscopies, for different drug concentrations (2-8 μM) at 48 h exposure. Multivariate data analysis was applied (unsupervised PCA), unveiling drug- and concentration-dependent effects: apart from discrimination between control and drug-treated cells, a clear separation was obtained for the different agents studied - mononuclear vs. polynuclear, and Pt(ii) vs. Pd(ii). Spectral biomarkers of drug action were identified, as well as the cellular response to the chemotherapeutic insult. The main effect of the tested compounds was found to be on DNA, lipids and proteins, the Pd(ii) agent having a more significant impact on proteins while its Pt(ii) homologue affected the cellular lipid content at lower concentrations, which suggests the occurrence of distinct and unconventional pathways of cytotoxicity for these dinuclear polyamine complexes. Raman and FTIR microspectroscopies were confirmed as powerful non-invasive techniques to obtain unique spectral signatures of the biochemical impact and physiological reaction of cells to anticancer agents.
Collapse
Affiliation(s)
| | - M Pilling
- Manchester Institute of Biotechnology, Univ. Manchester, Manchester, M1 7DN, UK
| | - P Gardner
- Manchester Institute of Biotechnology, Univ. Manchester, Manchester, M1 7DN, UK
| | - J Doherty
- Manchester Institute of Biotechnology, Univ. Manchester, Manchester, M1 7DN, UK and Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - G Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - K Wehbe
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - C Kelley
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | | | - M P M Marques
- "Química-Física Molecular", Univ. Coimbra, 3004-535 Coimbra, Portugal. and Dep. Life Sciences, Univ. Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
7
|
Geng J, Aioub M, El-Sayed MA, Barry BA. An Ultraviolet Resonance Raman Spectroscopic Study of Cisplatin and Transplatin Interactions with Genomic DNA. J Phys Chem B 2017; 121:8975-8983. [PMID: 28925698 DOI: 10.1021/acs.jpcb.7b08156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet resonance Raman (UVRR) spectroscopy is a label-free method to define biomacromolecular interactions with anticancer compounds. Using UVRR, we describe the binding interactions of two Pt(II) compounds, cisplatin (cis-diamminedichloroplatinum(II)) and its isomer, transplatin, with nucleotides and genomic DNA. Cisplatin binds to DNA and other cellular components and triggers apoptosis, whereas transplatin is clinically ineffective. Here, a 244 nm UVRR study shows that purine UVRR bands are altered in frequency and intensity when mononucleotides are treated with cisplatin. This result is consistent with previous suggestions that purine N7 provides the cisplatin-binding site. The addition of cisplatin to DNA also causes changes in the UVRR spectrum, consistent with binding of platinum to purine N7 and disruption of hydrogen-bonding interactions between base pairs. Equally important is that transplatin treatment of DNA generates similar UVRR spectral changes, when compared to cisplatin-treated samples. Kinetic analysis, performed by monitoring decreases of the 1492 cm-1 band, reveals biphasic kinetics and is consistent with a two-step binding mechanism for both platinum compounds. For cisplatin-DNA, the rate constants (6.8 × 10-5 and 6.5 × 10-6 s-1) are assigned to the formation of monofunctional adducts and to bifunctional, intrastrand cross-linking, respectively. In transplatin-DNA, there is a 3.4-fold decrease in the rate constant of the slow phase, compared with the cisplatin samples. This change is attributed to generation of interstrand, rather than intrastrand, adducts. This longer reaction time may result in increased competition in the cellular environment and account, at least in part, for the lower pharmacological efficacy of transplatin.
Collapse
Affiliation(s)
- Jiafeng Geng
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Mena Aioub
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Mostafa A El-Sayed
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Bridgette A Barry
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Musumeci D, Platella C, Riccardi C, Merlino A, Marzo T, Massai L, Messori L, Montesarchio D. A first-in-class and a fished out anticancer platinum compound: cis-[PtCl2(NH3)2] and cis-[PtI2(NH3)2] compared for their reactivity towards DNA model systems. Dalton Trans 2016; 45:8587-600. [PMID: 27126508 DOI: 10.1039/c6dt00294c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contrary to what was believed for many years, cis-PtI2(NH3)2, the diiodido analogue of cisplatin, displays high in vitro antiproliferative activity toward a set of tumour cell lines, overcoming resistance to cisplatin in a platinum-resistant cancer cell line. In the context of a general reappraisal of iodinated Pt(ii) derivatives, aiming at a more systematic evaluation of their chemical and biological profiles, here we report on the reactivity of cis-PtI2(NH3)2 with selected DNA model systems, in single, double strand or G-quadruplex form, using cisplatin as a control. A combined approach has been exploited in this study, including circular dichroism (CD), UV-visible spectroscopy and electrospray mass spectrometry (ESI-MS) analyses. The data reveal that cis-PtI2(NH3)2 shows an overall reactivity towards the investigated oligonucleotides significantly higher than cisplatin.
Collapse
Affiliation(s)
- Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, I-80126 Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Elucidating the reactivity of Pt(II) complexes with (O,S) bidentate ligands towards DNA model systems. J Inorg Biochem 2016; 160:198-209. [PMID: 26921982 DOI: 10.1016/j.jinorgbio.2016.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 01/01/2023]
Abstract
In the search for novel platinum-based anticancer therapeutic agents, we have recently established a structural motif of (O,S) bidentate ligands bound to a Pt(II) metal center which is effective against various cancer cell lines. Aiming at further enhancing the cytotoxicity of metal-based drugs, the identification of potential biological targets and elucidation of the mode of action of selected lead compounds is of utmost importance. Here we report our studies on the DNA interaction of three representative Pt(II) complexes of the investigated series, using various model systems and analytical techniques. In detail, CD spectroscopy as well as ESI-MS and MS(2) techniques were applied to gain an overall picture of the binding properties of this class of (O,S) bidentate Pt(II) compounds with defined oligonucleotide sequences in single strand, duplex or G-quadruplex form, as well as with the nucleobase 9-methylguanine. On the whole, it was demonstrated that the tested compounds interact with DNA and produce conformational changes of different extents depending on the sequence and structure of the examined oligonucleotide. Guanine was established as the preferential target within the DNA sequence, but in the absence or unavailability of guanines, alternative binding sites can be addressed. The implications of these results are thoroughly discussed.
Collapse
|
10
|
Gąsior-Głogowska M, Malek K, Zajac G, Baranska M. A new insight into the interaction of cisplatin with DNA: ROA spectroscopic studies on the therapeutic effect of the drug. Analyst 2015; 141:291-6. [PMID: 26596762 DOI: 10.1039/c5an02140e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman optical activity (ROA) spectroscopy has been applied for the first time to study the interaction of cisplatin with DNA. The knowledge about the structure of DNA-metal ion cross-links and hence the mechanism of the drug action is fundamental for the development of new antitumor drugs. At the same time, there is an urgent need to search for new methods for monitoring of this effect at the therapeutic dose of a drug. We have demonstrated that ROA spectroscopy is a sensitive technique with the capability to follow the structural alteration of the whole DNA molecule upon drug binding via a direct observation of transformation undergoing within chiral sugar moieties. A ROA profile delivers clear evidence of a partial transition from the B-DNA to the A-form due to the formation of cisplatin-DNA cross-links.
Collapse
Affiliation(s)
- M Gąsior-Głogowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, 30-348, Poland
| | | | | | | |
Collapse
|
11
|
Agarwal S, Ray B, Mehrotra R. SERS as an advanced tool for investigating chloroethyl nitrosourea derivatives complexation with DNA. Int J Biol Macromol 2015; 81:891-7. [DOI: 10.1016/j.ijbiomac.2015.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 01/20/2023]
|
12
|
Kast RE, Tucker SC, Killian K, Trexler M, Honn KV, Auner GW. Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev 2015; 33:673-93. [PMID: 24510129 DOI: 10.1007/s10555-013-9489-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.
Collapse
Affiliation(s)
- Rachel E Kast
- Smart Sensors and Integrated Microsystems Laboratories, Department of Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Drive, Room 3100, Detroit, MI, 48202, USA
| | | | | | | | | | | |
Collapse
|
13
|
Masetti M, Xie HN, Krpetić Ž, Recanatini M, Alvarez-Puebla RA, Guerrini L. Revealing DNA Interactions with Exogenous Agents by Surface-Enhanced Raman Scattering. J Am Chem Soc 2014; 137:469-76. [DOI: 10.1021/ja511398w] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Matteo Masetti
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—Università di Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Hai-nan Xie
- Medcom Advance SA, Viladecans
Bussines Park, Edificio Brasil, C/Bertran i Musitu, 83-85, 08840 Viladecans (Barcelona), Spain
| | - Željka Krpetić
- Centre
for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maurizio Recanatini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—Università di Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Ramon A. Alvarez-Puebla
- Medcom Advance SA, Viladecans
Bussines Park, Edificio Brasil, C/Bertran i Musitu, 83-85, 08840 Viladecans (Barcelona), Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Universitat Rovira i Virgili, Carrer
de Marcellí Domingo s/n, 43007 Tarragona, Spain
| | - Luca Guerrini
- Medcom Advance SA, Viladecans
Bussines Park, Edificio Brasil, C/Bertran i Musitu, 83-85, 08840 Viladecans (Barcelona), Spain
- Universitat Rovira i Virgili, Carrer
de Marcellí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
14
|
Jangir DK, Mehrotra R. Raman spectroscopic evaluation of DNA adducts of a platinum containing anticancer drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:386-389. [PMID: 24810023 DOI: 10.1016/j.saa.2014.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 03/30/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Mechanistic understanding of the interaction of drugs with their target molecules is important for better understanding of their mode of action and to improve their efficacy. Carboplatin is a platinum containing anticancer drug, used to treat different type of tumors. In the present work, we applied Raman spectroscopy to study the interaction of carboplatin with DNA at molecular level using different carboplatin-DNA molar ratios. These Raman spectroscopic results provide comprehensive understanding on the carboplatin-DNA interactions and indicate that DNA cross-linked adducts formed by carboplatin are similar to cisplatin adducts. The results indicate that guanine N7 and adenine N7 are the putative sites for carboplatin interaction. It is observed that carboplatin has some affinity toward cytosine in DNA. Phosphate sugar backbone of DNA showed conformation perturbation in DNA which were easily sensible at higher concentrations of carboplatin. Most importantly, carboplatin interaction induces intermediate A- and B-DNA conformations at the cross-linking sites.
Collapse
Affiliation(s)
- Deepak K Jangir
- Quantum Optics and Photon Physics, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
| | - Ranjana Mehrotra
- Quantum Optics and Photon Physics, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India.
| |
Collapse
|
15
|
Vaverkova V, Vrana O, Adam V, Pekarek T, Jampilek J, Babula P. The study of naphthoquinones and their complexes with DNA by using Raman spectroscopy and surface enhanced Raman spectroscopy: new insight into interactions of DNA with plant secondary metabolites. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461393. [PMID: 25045679 PMCID: PMC4090563 DOI: 10.1155/2014/461393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/21/2014] [Indexed: 11/17/2022]
Abstract
Naphthoquinones represent the group of plant secondary metabolites with cytotoxic properties based on their ability to generate reactive oxygen species and interfere with the processes of cell respiration. Due to this fact, the possible cytotoxic mechanisms on cellular and subcellular levels are investigated intensively. There are many targets of cytotoxic action on the cellular level; however, DNA is a critical target of many cytotoxic compounds. Due to the cytotoxic properties of naphthoquinones, it is necessary to study the processes of naphthoquinones, DNA interactions (1,4-naphthoquinone, binapthoquinone, juglone, lawsone, plumbagin), especially by using modern analytical techniques. In our work, the Raman spectroscopy was used to determine the possible binding sites of the naphthoquinones on the DNA and to characterize the bond of naphthoquinone to DNA. Experimental data reveals the relationships between the perturbations of structure-sensitive Raman bands and the types of the naphthoquinones involved. The modification of DNA by the studied naphthoquinones leads to the nonspecific interaction, which causes the transition of B-DNA into A-DNA conformation. The change of the B-conformation of DNA for all measured DNA modified by naphthoquinones except plumbagin is obvious.
Collapse
Affiliation(s)
- Veronika Vaverkova
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, 612 42 Brno, Czech Republic
| | - Oldrich Vrana
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, C612 65 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tomas Pekarek
- Zentiva, k.s., Development Department, U Kabelovny 130, 102 37 Praha 10, Czech Republic
| | - Josef Jampilek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, 612 42 Brno, Czech Republic
| | - Petr Babula
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, 612 42 Brno, Czech Republic
| |
Collapse
|
16
|
Neupane GP, Dhakal KP, Kim MS, Lee H, Guthold M, Joseph VS, Hong JD, Kim J. Simple method of DNA stretching on glass substrate for fluorescence imaging and spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:051210. [PMID: 24407597 DOI: 10.1117/1.jbo.19.5.051210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/13/2013] [Indexed: 06/03/2023]
Abstract
We demonstrate a simple method of stretching DNA to its full length, suitable for optical imaging and atomic force microscopy (AFM). Two competing forces on the DNA molecules, which are the electrostatic attraction between positively charged dye molecules (YOYO-1) intercalated into DNA and the negatively charged surface of glass substrate, and the centrifugal force of the rotating substrate, are mainly responsible for the effective stretching and the dispersion of single strands of DNA. The density of stretched DNA molecules could be controlled by the concentration of the dye-stained DNA solution. Stretching of single DNA molecules was confirmed by AFM imaging and the photoluminescence spectra of single DNA molecule stained with YOYO-1 were obtained, suggesting that our method is useful for spectroscopic analysis of DNA at the single molecule level.
Collapse
Affiliation(s)
- Guru P Neupane
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Daejeon 305-701, Republic of KoreabSungkyunkwan University, Department of Energy Science, Suwon 440-746, Republic of Korea
| | - Krishna P Dhakal
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Daejeon 305-701, Republic of KoreabSungkyunkwan University, Department of Energy Science, Suwon 440-746, Republic of Korea
| | - Min Su Kim
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
| | - Hyunsoo Lee
- Wake Forest University, Department of Physics, Winston-Salem, North Carolina 27109
| | - Martin Guthold
- Wake Forest University, Department of Physics, Winston-Salem, North Carolina 27109
| | - Vincent S Joseph
- Incheon National University, Department of Chemistry, Incheon 406-772, Republic of Korea
| | - Jong-Dal Hong
- Incheon National University, Department of Chemistry, Incheon 406-772, Republic of Korea
| | - Jeongyong Kim
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Daejeon 305-701, Republic of KoreabSungkyunkwan University, Department of Energy Science, Suwon 440-746, Republic of KoreaeIncheon National University, Department of Physi
| |
Collapse
|
17
|
Cheng MH, Huang YX, Li JF, Wu ZJ, Xie LJ. Characteristic variation of α-fetoprotein DNA nanometer-range irradiated by iodine-125. Cancer Biother Radiopharm 2014; 28:226-32. [PMID: 23573955 DOI: 10.1089/cbr.2012.1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To obtain the characteristic variation of structure and functional groups of α-fetoprotein (AFP) DNA irradiated by iodine-125((125)I), the AFP antisense oligonucleotide labeled with various radioactivity dose (125)I was mixed with the AFP DNA in a simulated polymerase chain reaction temperature condition. After the mixtures were irradiated by the (125)I from 2 to 72 hours, the mutation of the biogenic conformation and functional groups of the irradiated DNA were investigated using laser Raman spectroscopy. The shifted peak and the decreased intensity of the characteristic Raman spectra were found, which demonstrated that the structure of the phosphodiester linkage was broke, the pyridine and purine bases in DNA emerged and damaged. The model of gene conformation changed from form B to form C spectrum after the nanometer-range irradiation with (125)I from 2 to 24 hours. The damage of local pyridine and purine bases gradually increased along with the accumulation of irradiation, and the bases and ribosome were finally dissociated and stacked.
Collapse
Affiliation(s)
- Mu-hua Cheng
- Department of Nuclear Medicine, Third Hospital Affiliated Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Chval Z, Kabeláč M, Burda JV. Mechanism of the cis-[Pt(1R,2R-DACH)(H2O)2]2+ intrastrand binding to the double-stranded (pGpG)·(CpC) dinucleotide in aqueous solution: a computational DFT study. Inorg Chem 2013; 52:5801-13. [PMID: 23656523 DOI: 10.1021/ic302654s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A mechanism of the intrastrand 1,2-cross-link formation between the double-stranded pGpG·CpC dinucleotide (ds(pGpG)) and fully aquated oxaliplatin cis-[Pt(DACH)(H2O)2](2+) (DACH = cyclohexane-1R,2R-diamine) is presented. All structures of the reaction pathways including the transition states (TSs) were fully optimized in water solvent using DFT methodology with dispersion corrections. Both 5' → 3' and 3' → 5' binding directions were considered. In the first step there is a slight kinetic preference for 5'-guanine (5'G) monoadduct formation with an activation Gibbs free energy of 18.7 kcal/mol since the N7 center of the 5'G base is fully exposed to the solvent. On the other hand, the N7 atom of 3'-guanine (3'G) is sterically shielded by 5'G. The lowest energy path for formation of the 3'G monoadduct with an activation barrier of 19.3 kcal/mol is connected with a disruption of the 'DNA-like' structure of ds(pGpG). Monoadduct formation is the rate-determining process. The second step, chelate formation, is kinetically preferred in the 3' → 5' direction. The whole process of the platination is exergonic by up to -18.8 kcal/mol. Structural changes of ds(pGpG), charge transfer effects, and the influence of platination on the G·C base pair interaction strengths are also discussed in detail.
Collapse
Affiliation(s)
- Zdeněk Chval
- Department of Laboratory Methods and Information Systems, Faculty of Health and Social Studies, University of South Bohemia, J. Boreckého 27, 370 11 České Budějovice, Czech Republic.
| | | | | |
Collapse
|
20
|
Platinum and Palladium Polyamine Complexes as Anticancer Agents: The Structural Factor. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/287353] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the introduction of cisplatin to oncology in 1978, Pt(II) and Pd(II) compounds have been intensively studied with a view to develop the improved anticancer agents. Polynuclear polyamine complexes, in particular, have attracted special attention, since they were found to yield DNA adducts not available to conventional drugs (through long-distance intra- and interstrand cross-links) and to often circumvent acquired cisplatin resistance. Moreover, the cytotoxic potency of these polyamine-bridged chelates is strictly regulated by their structural characteristics, which renders this series of compounds worth investigating and their synthesis being carefully tailored in order to develop third-generation drugs coupling an increased spectrum of activity to a lower toxicity. The present paper addresses the latest developments in the design of novel antitumor agents based on platinum and palladium, particularly polynuclear chelates with variable length aliphatic polyamines as bridging ligands, highlighting the close relationship between their structural preferences and cytotoxic ability. In particular, studies by vibrational spectroscopy techniques are emphasised, allowing to elucidate the structure-activity relationships (SARs) ruling anticancer activity.
Collapse
|
21
|
Wang J, Zhang G, Li Q, Jiang H, Liu C, Amatore C, Wang X. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Sci Rep 2013; 3:1157. [PMID: 23362457 PMCID: PMC3557452 DOI: 10.1038/srep01157] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/11/2012] [Indexed: 12/15/2022] Open
Abstract
Fluorescence imaging in vivo allows non-invasive tumor diagnostic thus permitting a direct monitoring of cancer therapies progresses. It is established herein that fluorescent gold nanoclusters are spontaneously biosynthesized by cancerous cell (i.e., HepG2, human hepatocarcinoma cell line; K562, leukemia cell line) incubated with micromolar chloroauric acid solutions, a biocompatible molecular Au(III) species. Gold nanoparticles form by Au(III) reduction inside cells cytoplasms and ultimately concentrate around their nucleoli, thus affording precise cell imaging. Importantly, this does not occur in non-cancerous cells, as evidenced with human embryo liver cells (L02) used as controls. This dichotomy is exploited for a new strategy for in vivo self-bio-imaging of tumors. Subcutaneous injections of millimolar chloroauric acid solution near xenograft tumors of the nude mouse model of hepatocellular carcinoma or chronic myeloid leukemia led to efficient biosynthesis of fluorescent gold nanoclusters without significant dissemination to the surrounding normal tissues, hence allowing specific fluorescent self-bio-marking of the tumors.
Collapse
Affiliation(s)
- Jianling Wang
- State Key Laboratory of Bioelectronics-Chien-Shiung Wu Lab, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | | | | | | | | | | | | |
Collapse
|
22
|
N-methyl N-nitroso Urea induced altered DNA structure initiate hepatocarcinogenesis. Prev Med 2012; 54 Suppl:S130-6. [PMID: 22306981 DOI: 10.1016/j.ypmed.2012.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/02/2012] [Accepted: 01/05/2012] [Indexed: 11/21/2022]
Abstract
The status of inflammatory cytokines IL-1β, IL-6, the anti-apoptotic gene Bcl2 and key transcription factor NFκB in hepatic milieu of N-methyl N-nitroso Urea (MNU) primed Balb/c mice was assessed using RT-PCR and Western blot. Haematoxyline & Eosin (H&E) based histology was performed to evaluate the morphological changes in the cancerous liver cells in respect to control. Laser spectroscopy was used to study the alteration in DNA structure. 40 week MNU treatment induced increased expressions of inflammatory cytokines (IL-1β, IL-6) of Bcl-2 at mRNA level and NFκB and IL-1β at protein level. Alteration in hepatocytes was clearly demonstrated in H&E stained liver sections compared to control. MNU primed liver DNA samples revealed an interference of MNU in nucleic acid bases and structure, reflected by a peak shift at 1456 cm(-1) and shoulder formation at 1357 cm(-1) compared to control DNA samples. This study emphasizes that MNU, a harmful industrial and environmental pollutant, potentially activates inflammatory cytokines (IL-1β, IL-6) in hepatic cells with increased expression of NFκB which might be responsible for hepatocarcinogenesis in Balb/c mice. The outcome sets the basis for further studies on the mitigating effects of dietary biofactors on MNU.
Collapse
|
23
|
Wang C, Li J, Amatore C, Chen Y, Jiang H, Wang XM. Gold Nanoclusters and Graphene Nanocomposites for Drug Delivery and Imaging of Cancer Cells. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Wang C, Li J, Amatore C, Chen Y, Jiang H, Wang XM. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew Chem Int Ed Engl 2011; 50:11644-8. [PMID: 21990208 DOI: 10.1002/anie.201105573] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/05/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Chensu Wang
- State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, No. 2 Sipailou, Nanjing 210096, China
| | | | | | | | | | | |
Collapse
|
25
|
Nawaz H, Bonnier F, Knief P, Howe O, Lyng FM, Meade AD, Byrne HJ. Evaluation of the potential of Raman microspectroscopy for prediction of chemotherapeutic response to cisplatin in lung adenocarcinoma. Analyst 2010; 135:3070-6. [DOI: 10.1039/c0an00541j] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Raman spectroscopic investigation on the interaction of malignanthepatocytes with doxorubicin. Biophys Chem 2009; 140:57-61. [DOI: 10.1016/j.bpc.2008.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 11/17/2008] [Indexed: 11/24/2022]
|