1
|
Ligas J, Pineau E, Bock R, Huynen MA, Meyer EH. The assembly pathway of complex I in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:447-459. [PMID: 30347487 DOI: 10.1111/tpj.14133] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 05/23/2023]
Abstract
All present-day mitochondria originate from a single endosymbiotic event that gave rise to the last eukaryotic common ancestor more than a billion years ago. However, to date, many aspects of mitochondrial evolution have remained unresolved. Comparative genomics and proteomics have revealed a complex evolutionary origin for many mitochondrial components. To understand the evolution of the respiratory chain, we have examined both the components and the mechanisms of the assembly pathway of complex I. Complex I represents the first enzyme in the respiratory chain, and complex I deficiencies have dramatic consequences in both animals and plants. The complex is located in the mitochondrial inner membrane and possesses two arms: one embedded in the inner membrane and one protruding in the matrix. Here, we describe the assembly pathway of complex I in the model plant Arabidopsis thaliana. Using a proteomics approach called complexome profiling, we have resolved the different steps in the assembly process in plants. We propose a model for the stepwise assembly of complex I, including every subunit. We then compare this pathway with the corresponding pathway in humans and find that complex I assembly in plants follows a different, and likely ancestral, pathway compared with the one in humans. We show that the main evolutionary changes in complex I structure and assembly in humans occurred at the level of the membrane arm, whereas the matrix arm remained rather conserved.
Collapse
Affiliation(s)
- Joanna Ligas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Emmanuelle Pineau
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 Rue du Général Zimmer, 67084, Strasbourg, France
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Centre for Mitochondrial Medicine, Radboud University, Nijmegen, The Netherlands
| | - Etienne H Meyer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 Rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
2
|
Locking loop movement in the ubiquinone pocket of complex I disengages the proton pumps. Nat Commun 2018; 9:4500. [PMID: 30374105 PMCID: PMC6206036 DOI: 10.1038/s41467-018-06955-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/20/2018] [Indexed: 01/19/2023] Open
Abstract
Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the largest enzyme of the mitochondrial respiratory chain and a significant source of reactive oxygen species (ROS). We hypothesized that during energy conversion by complex I, electron transfer onto ubiquinone triggers the concerted rearrangement of three protein loops of subunits ND1, ND3, and 49-kDa thereby generating the power-stoke driving proton pumping. Here we show that fixing loop TMH1-2ND3 to the nearby subunit PSST via a disulfide bridge introduced by site-directed mutagenesis reversibly disengages proton pumping without impairing ubiquinone reduction, inhibitor binding or the Active/Deactive transition. The X-ray structure of mutant complex I indicates that the disulfide bridge immobilizes but does not displace the tip of loop TMH1-2ND3. We conclude that movement of loop TMH1-2ND3 located at the ubiquinone-binding pocket is required to drive proton pumping corroborating one of the central predictions of our model for the mechanism of energy conversion by complex I proposed earlier. Proton pumping of mitochondrial complex I depends on the reduction of ubiquinone but the molecular mechanism of energy conversion is unclear. Here, the authors provide structural and biochemical evidence showing that movement of loop TMH1-2 in complex I subunit ND3 is required to drive proton pumping.
Collapse
|
3
|
Wirth C, Brandt U, Hunte C, Zickermann V. Structure and function of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:902-14. [PMID: 26921811 DOI: 10.1016/j.bbabio.2016.02.013] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
Abstract
Proton-pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of the respiratory chain. Fourteen central subunits represent the minimal form of complex I and can be assigned to functional modules for NADH oxidation, ubiquinone reduction, and proton pumping. In addition, the mitochondrial enzyme comprises some 30 accessory subunits surrounding the central subunits that are not directly associated with energy conservation. Complex I is known to release deleterious oxygen radicals (ROS) and its dysfunction has been linked to a number of hereditary and degenerative diseases. We here review recent progress in structure determination, and in understanding the role of accessory subunits and functional analysis of mitochondrial complex I. For the central subunits, structures provide insight into the arrangement of functional modules including the substrate binding sites, redox-centers and putative proton channels and pump sites. Only for two of the accessory subunits, detailed structures are available. Nevertheless, many of them could be localized in the overall structure of complex I, but most of these assignments have to be considered tentative. Strikingly, redox reactions and proton pumping machinery are spatially completely separated and the site of reduction for the hydrophobic substrate ubiquinone is found deeply buried in the hydrophilic domain of the complex. The X-ray structure of complex I from Yarrowia lipolytica provides clues supporting the previously proposed two-state stabilization change mechanism, in which ubiquinone redox chemistry induces conformational states and thereby drives proton pumping. The same structural rearrangements may explain the active/deactive transition of complex I implying an integrated mechanistic model for energy conversion and regulation. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Christophe Wirth
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Ulrich Brandt
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, The Netherlands; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| | - Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany.
| |
Collapse
|
4
|
Dröse S, Stepanova A, Galkin A. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:946-57. [PMID: 26777588 PMCID: PMC4893024 DOI: 10.1016/j.bbabio.2015.12.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/11/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a key enzyme in cellular energy metabolism and provides approximately 40% of the proton-motive force that is utilized during mitochondrial ATP production. The dysregulation of complex I function – either genetically, pharmacologically, or metabolically induced – has severe pathophysiological consequences that often involve an imbalance in the production of reactive oxygen species (ROS). Slow transition of the active (A) enzyme to the deactive, dormant (D) form takes place during ischemia in metabolically active organs such as the heart and brain. The reactivation of complex I occurs upon reoxygenation of ischemic tissue, a process that is usually accompanied by an increase in cellular ROS production. Complex I in the D-form serves as a protective mechanism preventing the oxidative burst upon reperfusion. Conversely, however, the D-form is more vulnerable to oxidative/nitrosative damage. Understanding the so-called active/deactive (A/D) transition may contribute to the development of new therapeutic interventions for conditions like stroke, cardiac infarction, and other ischemia-associated pathologies. In this review, we summarize current knowledge on the mechanism of A/D transition of mitochondrial complex I considering recently available structural data and site-specific labeling experiments. In addition, this review discusses in detail the impact of the A/D transition on ROS production by complex I and the S-nitrosation of a critical cysteine residue of subunit ND3 as a strategy to prevent oxidative damage and tissue damage during ischemia–reperfusion injury. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. The current knowledge on active/deactive (A/D) transition of complex I is reviewed. The mechanism and driving force of the A/D conformational change are discussed. The A/D transition can affect ROS production and ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Stefan Dröse
- Clinic of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main 60590, Germany.
| | - Anna Stepanova
- Medical Biology Centre, School of Biological Sciences, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexander Galkin
- Medical Biology Centre, School of Biological Sciences, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA.
| |
Collapse
|
5
|
Wikström M, Sharma V, Kaila VRI, Hosler JP, Hummer G. New Perspectives on Proton Pumping in Cellular Respiration. Chem Rev 2015; 115:2196-221. [DOI: 10.1021/cr500448t] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten Wikström
- Institute
of Biotechnology, University of Helsinki, Biocenter 3 (Viikinkaari 1), PB
65, Helsinki 00014, Finland
| | - Vivek Sharma
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Ville R. I. Kaila
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany
| | - Jonathan P. Hosler
- Department
of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße
3, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
6
|
Projection-based volume alignment. J Struct Biol 2013; 182:93-105. [PMID: 23410725 DOI: 10.1016/j.jsb.2013.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/18/2013] [Accepted: 01/30/2013] [Indexed: 11/21/2022]
Abstract
When heterogeneous samples of macromolecular assemblies are being examined by 3D electron microscopy (3DEM), often multiple reconstructions are obtained. For example, subtomograms of individual particles can be acquired from tomography, or volumes of multiple 2D classes can be obtained by random conical tilt reconstruction. Of these, similar volumes can be averaged to achieve higher resolution. Volume alignment is an essential step before 3D classification and averaging. Here we present a projection-based volume alignment (PBVA) algorithm. We select a set of projections to represent the reference volume and align them to a second volume. Projection alignment is achieved by maximizing the cross-correlation function with respect to rotation and translation parameters. If data are missing, the cross-correlation functions are normalized accordingly. Accurate alignments are obtained by averaging and quadratic interpolation of the cross-correlation maximum. Comparisons of the computation time between PBVA and traditional 3D cross-correlation methods demonstrate that PBVA outperforms the traditional methods. Performance tests were carried out with different signal-to-noise ratios using modeled noise and with different percentages of missing data using a cryo-EM dataset. All tests show that the algorithm is robust and highly accurate. PBVA was applied to align the reconstructions of a subcomplex of the NADH: ubiquinone oxidoreductase (Complex I) from the yeast Yarrowia lipolytica, followed by classification and averaging.
Collapse
|
7
|
A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I. Biochem J 2011; 437:279-88. [PMID: 21545356 DOI: 10.1042/bj20110359] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a very large membrane protein complex with a central function in energy metabolism. Complex I from the aerobic yeast Yarrowia lipolytica comprises 14 central subunits that harbour the bioenergetic core functions and at least 28 accessory subunits. Despite progress in structure determination, the position of individual accessory subunits in the enzyme complex remains largely unknown. Proteomic analysis of subcomplex Iδ revealed that it lacked eleven subunits, including the central subunits ND1 and ND3 forming the interface between the peripheral and the membrane arm in bacterial complex I. This unexpected observation provided insight into the structural organization of the connection between the two major parts of mitochondrial complex I. Combining recent structural information, biochemical evidence on the assignment of individual subunits to the subdomains of complex I and sequence-based predictions for the targeting of subunits to different mitochondrial compartments, we derived a model for the arrangement of the subunits in the membrane arm of mitochondrial complex I.
Collapse
|
8
|
Genova ML, Lenaz G. New developments on the functions of coenzyme Q in mitochondria. Biofactors 2011; 37:330-54. [PMID: 21989973 DOI: 10.1002/biof.168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/12/2022]
Abstract
The notion of a mobile pool of coenzyme Q (CoQ) in the lipid bilayer has changed with the discovery of respiratory supramolecular units, in particular the supercomplex comprising complexes I and III; in this model, the electron transfer is thought to be mediated by tunneling or microdiffusion, with a clear kinetic advantage on the transfer based on random collisions. The CoQ pool, however, has a fundamental function in establishing a dissociation equilibrium with bound quinone, besides being required for electron transfer from other dehydrogenases to complex III. The mechanism of CoQ reduction by complex I is analyzed regarding recent developments on the crystallographic structure of the enzyme, also in relation to the capacity of complex I to generate superoxide. Although the mechanism of the Q-cycle is well established for complex III, involvement of CoQ in proton translocation by complex I is still debated. Some additional roles of CoQ are also examined, such as the antioxidant effect of its reduced form and the capacity to bind the permeability transition pore and the mitochondrial uncoupling proteins. Finally, a working hypothesis is advanced on the establishment of a vicious circle of oxidative stress and supercomplex disorganization in pathological states, as in neurodegeneration and cancer.
Collapse
|
9
|
Dröse S, Krack S, Sokolova L, Zwicker K, Barth HD, Morgner N, Heide H, Steger M, Nübel E, Zickermann V, Kerscher S, Brutschy B, Radermacher M, Brandt U. Functional dissection of the proton pumping modules of mitochondrial complex I. PLoS Biol 2011; 9:e1001128. [PMID: 21886480 PMCID: PMC3160329 DOI: 10.1371/journal.pbio.1001128] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/13/2011] [Indexed: 12/28/2022] Open
Abstract
A catalytically active subcomplex of respiratory chain complex I lacks 14 of its 42 subunits yet retains half of its proton-pumping capacity, indicating that its membrane arm has two pump modules. Mitochondrial complex I, the largest and most complicated proton pump of the respiratory chain, links the electron transfer from NADH to ubiquinone to the pumping of four protons from the matrix into the intermembrane space. In humans, defects in complex I are involved in a wide range of degenerative disorders. Recent progress in the X-ray structural analysis of prokaryotic and eukaryotic complex I confirmed that the redox reactions are confined entirely to the hydrophilic peripheral arm of the L-shaped molecule and take place at a remarkable distance from the membrane domain. While this clearly implies that the proton pumping within the membrane arm of complex I is driven indirectly via long-range conformational coupling, the molecular mechanism and the number, identity, and localization of the pump-sites remains unclear. Here, we report that upon deletion of the gene for a small accessory subunit of the Yarrowia complex I, a stable subcomplex (nb8mΔ) is formed that lacks the distal part of the membrane domain as revealed by single particle analysis. The analysis of the subunit composition of holo and subcomplex by three complementary proteomic approaches revealed that two (ND4 and ND5) of the three subunits with homology to bacterial Mrp-type Na+/H+ antiporters that have been discussed as prime candidates for harbouring the proton pumps were missing in nb8mΔ. Nevertheless, nb8mΔ still pumps protons at half the stoichiometry of the complete enzyme. Our results provide evidence that the membrane arm of complex I harbours two functionally distinct pump modules that are connected in series by the long helical transmission element recently identified by X-ray structural analysis. Mitochondria—the power plants of eukaryotic cells—produce energy in the form of ATP. More than one-third of this energy production is driven by a gradient of protons across the mitochondrial membrane created by the pumping action of a very large enzyme called complex I. Defects in complex I are implicated in numerous pathological processes like neurodegeneration and biological aging. Recent X-ray structural analyses revealed that complex I is an L-shaped molecule with one arm integrated into the membrane and the other sticking into the aqueous interior of the mitochondrion; the chemical reactions of the enzyme take place in this hydrophilic arm, clearly separated from proton pumping that must occur somewhere in the membrane arm. To assign the pump function to structural domains, we created a stable subcomplex of complex I by deleting the gene encoding one of its small subunits in a yeast called Yarrowia lipolytica. This subcomplex lacked half of the membrane arm; it was still catalytically active but it pumped only half the number of protons as the full complex. This indicates that complex I has two functionally distinct pump modules operating in its membrane arm.
Collapse
Affiliation(s)
- Stefan Dröse
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Stephanie Krack
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Lucie Sokolova
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Klaus Zwicker
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Hans-Dieter Barth
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Heinrich Heide
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Mirco Steger
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Esther Nübel
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Volker Zickermann
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Stefan Kerscher
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Bernhard Brutschy
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Michael Radermacher
- University of Vermont, College of Medicine, Department of Molecular Physiology and Biophysics, Burlington, Vermont, United States of America
| | - Ulrich Brandt
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
10
|
Efremov RG, Sazanov LA. Respiratory complex I: 'steam engine' of the cell? Curr Opin Struct Biol 2011; 21:532-40. [PMID: 21831629 DOI: 10.1016/j.sbi.2011.07.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/01/2011] [Accepted: 07/07/2011] [Indexed: 12/19/2022]
Abstract
Complex I is the first enzyme of the respiratory chain and plays a central role in cellular energy production. It has been implicated in many human neurodegenerative diseases, as well as in ageing. One of the biggest membrane protein complexes, it is an L-shaped assembly consisting of hydrophilic and membrane domains. Previously, we have determined structures of the hydrophilic domain in several redox states. Last year was marked by fascinating breakthroughs in the understanding of the complete structure. We described the architecture of the membrane domain and of the entire bacterial complex I. X-ray analysis of the larger mitochondrial enzyme has also been published. The core subunits of the bacterial and mitochondrial enzymes have remarkably similar structures. The proposed mechanism of coupling between electron transfer and proton translocation involves long-range conformational changes, coordinated in part by a long α-helix, akin to the coupling rod of a steam engine.
Collapse
Affiliation(s)
- Rouslan G Efremov
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
11
|
Klodmann J, Braun HP. Proteomic approach to characterize mitochondrial complex I from plants. PHYTOCHEMISTRY 2011; 72:1071-80. [PMID: 21167537 DOI: 10.1016/j.phytochem.2010.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 05/04/2023]
Abstract
Mitochondrial NADH dehydrogenase complex (complex I) is by far the largest protein complex of the respiratory chain. It is best characterized for bovine mitochondria and known to consist of 45 different subunits in this species. Proteomic analyses recently allowed for the first time to systematically explore complex I from plants. The enzyme is especially large and includes numerous extra subunits. Upon subunit separation by various gel electrophoresis procedures and protein identifications by mass spectrometry, overall 47 distinct types of proteins were found to form part of Arabidopsis complex I. An additional subunit, ND4L, is present but could not be detected by the procedures employed due to its extreme biochemical properties. Seven of the 48 subunits occur in pairs of isoforms, six of which were experimentally proven. Fifteen subunits of complex I from Arabidopsis are specific for plants. Some of these resemble enzymes of known functions, e.g. carbonic anhydrases and l-galactono-1,4-lactone dehydrogenase (GLDH), which catalyzes the last step of ascorbate biosynthesis. This article aims to review proteomic data on the protein composition of complex I in plants. Furthermore, a proteomic re-evaluation on its protein constituents is presented.
Collapse
Affiliation(s)
- Jennifer Klodmann
- Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | | |
Collapse
|
12
|
Tocilescu MA, Zickermann V, Zwicker K, Brandt U. Quinone binding and reduction by respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1883-90. [DOI: 10.1016/j.bbabio.2010.05.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/08/2010] [Accepted: 05/10/2010] [Indexed: 12/12/2022]
|
13
|
Yu L, Snapp RR, Ruiz T, Radermacher M. Probabilistic principal component analysis with expectation maximization (PPCA-EM) facilitates volume classification and estimates the missing data. J Struct Biol 2010; 171:18-30. [PMID: 20385241 PMCID: PMC3353830 DOI: 10.1016/j.jsb.2010.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 11/19/2022]
Abstract
We have developed a new method for classifying 3D reconstructions with missing data obtained by electron microscopy techniques. The method is based on principal component analysis (PCA) combined with expectation maximization. The missing data, together with the principal components, are treated as hidden variables that are estimated by maximizing a likelihood function. PCA in 3D is similar to PCA for 2D image analysis. A lower dimensional subspace of significant features is selected, into which the data are projected, and if desired, subsequently classified. In addition, our new algorithm estimates the missing data for each individual volume within the lower dimensional subspace. Application to both a large model data set and cryo-electron microscopy experimental data demonstrates the good performance of the algorithm and illustrates its potential for studying macromolecular assemblies with continuous conformational variations.
Collapse
Affiliation(s)
- Lingbo Yu
- University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, VT 05405
- University of Vermont, Department of Computer Science, Burlington, VT 05405
| | - Robert R. Snapp
- University of Vermont, Department of Computer Science, Burlington, VT 05405
| | - Teresa Ruiz
- University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, VT 05405
| | - Michael Radermacher
- University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, VT 05405
- University of Vermont, Department of Computer Science, Burlington, VT 05405
| |
Collapse
|
14
|
Hunte C, Zickermann V, Brandt U. Functional Modules and Structural Basis of Conformational Coupling in Mitochondrial Complex I. Science 2010; 329:448-51. [PMID: 20595580 DOI: 10.1126/science.1191046] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Carola Hunte
- Institute for Biochemistry and Molecular Biology, Centre for Biological Signalling Studies (BIOSS), University of Freiburg, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
15
|
Klodmann J, Sunderhaus S, Nimtz M, Jänsch L, Braun HP. Internal architecture of mitochondrial complex I from Arabidopsis thaliana. THE PLANT CELL 2010; 22:797-810. [PMID: 20197505 PMCID: PMC2861459 DOI: 10.1105/tpc.109.073726] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 05/18/2023]
Abstract
The NADH dehydrogenase complex (complex I) of the respiratory chain has unique features in plants. It is the main entrance site for electrons into the respiratory electron transfer chain, has a role in maintaining the redox balance of the entire plant cell and additionally comprises enzymatic side activities essential for other metabolic pathways. Here, we present a proteomic investigation to elucidate its internal structure. Arabidopsis thaliana complex I was purified by a gentle biochemical procedure that includes a cytochrome c-mediated depletion of other respiratory protein complexes. To examine its internal subunit arrangement, isolated complex I was dissected into subcomplexes. Controlled disassembly of the holo complex (1000 kD) by low-concentration SDS treatment produced 10 subcomplexes of 550, 450, 370, 270, 240, 210, 160, 140, 140, and 85 kD. Systematic analyses of subunit composition by mass spectrometry gave insights into subunit arrangement within complex I. Overall, Arabidopsis complex I includes at least 49 subunits, 17 of which are unique to plants. Subunits form subcomplexes analogous to the known functional modules of complex I from heterotrophic eukaryotes (the so-called N-, Q-, and P-modules), but also additional modules, most notably an 85-kD domain including gamma-type carbonic anhydrases. Based on topological information for many of its subunits, we present a model of the internal architecture of plant complex I.
Collapse
Affiliation(s)
- Jennifer Klodmann
- Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz Universität Hannover, D-30419 Hannover, Germany
| | - Stephanie Sunderhaus
- Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz Universität Hannover, D-30419 Hannover, Germany
| | - Manfred Nimtz
- Proteome Research Group, Division of Cell and Immune Biology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Lothar Jänsch
- Proteome Research Group, Division of Cell and Immune Biology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Hans-Peter Braun
- Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz Universität Hannover, D-30419 Hannover, Germany
- Address correspondence to
| |
Collapse
|
16
|
Ben-Shachar D. The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. J Neural Transm (Vienna) 2010; 116:1383-96. [PMID: 19784753 DOI: 10.1007/s00702-009-0319-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 09/14/2009] [Indexed: 12/15/2022]
Abstract
Schizophrenia is currently believed to result from variations in multiple genes, each contributing a subtle effect, which combines with each other and with environmental stimuli to impact both early and late brain development. At present, schizophrenia clinical heterogeneity as well as the difficulties in relating cognitive, emotional and behavioral functions to brain substrates hinders the identification of a disease-specific anatomical, physiological, molecular or genetic abnormality. Mitochondria play a pivotal role in many essential processes, such as energy production, intracellular calcium buffering, transmission of neurotransmitters, apoptosis and ROS production, all either leading to cell death or playing a role in synaptic plasticity. These processes have been well established as underlying altered neuronal activity and thereby abnormal neuronal circuitry and plasticity, ultimately affecting behavioral outcomes. The present article reviews evidence supporting a dysfunction of mitochondria in schizophrenia, including mitochondrial hypoplasia, impairments in the oxidative phosphorylation system (OXPHOS) as well as altered mitochondrial-related gene expression. Abnormalities in mitochondrial complex I, which plays a major role in controlling OXPHOS activity, are discussed. Among them are schizophrenia specific as well as disease-state-specific alterations in complex I activity in the peripheral tissue, which can be modulated by DA. In addition, CNS and peripheral abnormalities in the expression of three of complex I subunits, associated with parallel alterations in their transcription factor, specificity protein 1 (Sp1) are reviewed. Finally, this review discusses the question of disease specificity of mitochondrial pathologies and suggests that mitochondria dysfunction could cause or arise from anomalities in processes involved in brain connectivity.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center and Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion IIT, Haifa, Israel.
| |
Collapse
|
17
|
Clason T, Ruiz T, Schägger H, Peng G, Zickermann V, Brandt U, Michel H, Radermacher M. The structure of eukaryotic and prokaryotic complex I. J Struct Biol 2010; 169:81-8. [PMID: 19732833 PMCID: PMC3144259 DOI: 10.1016/j.jsb.2009.08.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/28/2009] [Accepted: 08/29/2009] [Indexed: 10/20/2022]
Abstract
The structures of the NADH dehydrogenases from Bos taurus and Aquifex aeolicus have been determined by 3D electron microscopy, and have been analyzed in comparison with the previously determined structure of Complex I from Yarrowia lipolytica. The results show a clearly preserved domain structure in the peripheral arm of complex I, which is similar in the bacterial and eukaryotic complex. The membrane arms of both eukaryotic complexes show a similar shape but also significant differences in distinctive domains. One of the major protuberances observed in Y. lipolytica complex I appears missing in the bovine complex, while a protuberance not found in Y. lipolytica connects in bovine complex I a domain of the peripheral arm to the membrane arm. The structural similarities of the peripheral arm agree with the common functional principle of all complex Is. The differences seen in the membrane arm may indicate differences in the regulatory mechanism of the enzyme in different species.
Collapse
Affiliation(s)
- T. Clason
- University of Vermont, College of Medicine, Department Molecular Physiology and Biophysics, Burlington, VT 05405, USA
| | - T. Ruiz
- University of Vermont, College of Medicine, Department Molecular Physiology and Biophysics, Burlington, VT 05405, USA
| | - H. Schägger
- Goethe-Universität, Fachbereich Medizin, Molekulare Bioenergetik, D-60590 Frankfurt/Main, Germany
| | - G. Peng
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, D-60438 Frankfurt/Main, Germany
| | - V. Zickermann
- Goethe-Universität, Fachbereich Medizin, Molekulare Bioenergetik, D-60590 Frankfurt/Main, Germany
| | - U. Brandt
- Goethe-Universität, Fachbereich Medizin, Molekulare Bioenergetik, D-60590 Frankfurt/Main, Germany
| | - H. Michel
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, D-60438 Frankfurt/Main, Germany
| | - M. Radermacher
- University of Vermont, College of Medicine, Department Molecular Physiology and Biophysics, Burlington, VT 05405, USA
| |
Collapse
|
18
|
Abstract
Complex I (NADH:quinone oxidoreductase) is crucial to respiration in many aerobic organisms. In mitochondria, it oxidizes NADH (to regenerate NAD+ for the tricarboxylic acid cycle and fatty-acid oxidation), reduces ubiquinone (the electrons are ultimately used to reduce oxygen to water) and transports protons across the mitochondrial inner membrane (to produce and sustain the protonmotive force that supports ATP synthesis and transport processes). Complex I is also a major contributor to reactive oxygen species production in the cell. Understanding the mechanisms of energy transduction and reactive oxygen species production by complex I is not only a significant intellectual challenge, but also a prerequisite for understanding the roles of complex I in disease, and for the development of effective therapies. One approach to defining a complicated reaction mechanism is to break it down into manageable parts that can be tackled individually, before being recombined and integrated to produce the complete picture. Thus energy transduction by complex I comprises NADH oxidation by a flavin mononucleotide, intramolecular electron transfer from the flavin to bound quinone along a chain of iron–sulfur clusters, quinone reduction and proton translocation. More simply, molecular oxygen is reduced by the flavin, to form the reactive oxygen species superoxide and hydrogen peroxide. The present review summarizes and evaluates experimental data that pertain to the reaction mechanisms of complex I, and describes and discusses contemporary mechanistic hypotheses, proposals and models.
Collapse
|
19
|
Chapter 1 Visualizing functional flexibility by three-dimensional electron microscopy reconstructing complex I of the mitochondrial respiratory chain. Methods Enzymol 2009; 456:3-27. [PMID: 19348880 DOI: 10.1016/s0076-6879(08)04401-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Complex I is the major entry point in the bacterial and mitochondrial respiratory chain. Structural knowledge of the enzyme is still limited because of its large size and complicated architecture. Only the structure of the hydrophilic domain of a bacterial Complex I has been solved to high resolution by X-ray crystallography. To date, no X-ray structure of the complete enzyme has been reported, and most structural information of the holoenzyme has been obtained by 3-D electron microscopy. In this chapter the methods are described used for determining the 3-D reconstruction of Complex I that revealed for the first time a detailed and reproducible domain structure. Complex I is a highly flexible molecule, and methods for calculating the 3-D reconstruction from electron micrographs must take into account this heterogeneity. The techniques described in this chapter can be modified and adapted for the study of more heterogeneous preparations, such as functionalized Complex I. In addition, these techniques are not restricted to the structure determination of Complex I but are appropriate for the 3-D reconstruction of macromolecular assemblies from electron micrographs when inhomogeneities may be present.
Collapse
|
20
|
Couch VA, Medvedev ES, Stuchebrukhov AA. Electrostatics of the FeS clusters in respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1266-71. [PMID: 19445896 DOI: 10.1016/j.bbabio.2009.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/29/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
Respiratory complex I couples the transfer of electrons from NADH to ubiquinone and the translocation of protons across the mitochondrial membrane. A detailed understanding of the midpoint reduction potentials (E(m)) of each redox center and the factors which influence those potentials are critical in the elucidation of the mechanism of electron transfer in this enzyme. We present accurate electrostatic interaction energies for the iron-sulfur (FeS) clusters of complex I to facilitate the development of models and the interpretation of experiments in connection to electron transfer (ET) in this enzyme. To calculate redox titration curves for the FeS clusters it is necessary to include interactions between clusters, which in turn can be used to refine E(m) values and validate spectroscopic assignments of each cluster. Calculated titration curves for clusters N4, N5, and N6a are discussed. Furthermore, we present some initial findings on the electrostatics of the redox centers of complex I under the influence of externally applied membrane potentials. A means of determining the location of the FeS cofactors within the holo-complex based on electrostatic arguments is proposed. A simple electrostatic model of the protein/membrane system is examined to illustrate the viability of our hypothesis.
Collapse
Affiliation(s)
- Vernon A Couch
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
21
|
Sinha PK, Torres-Bacete J, Nakamaru-Ogiso E, Castro-Guerrero N, Matsuno-Yagi A, Yagi T. Critical roles of subunit NuoH (ND1) in the assembly of peripheral subunits with the membrane domain of Escherichia coli NDH-1. J Biol Chem 2009; 284:9814-23. [PMID: 19189973 PMCID: PMC2665103 DOI: 10.1074/jbc.m809468200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/28/2009] [Indexed: 11/06/2022] Open
Abstract
The bacterial proton-translocating NADH:quinone oxidoreductase (NDH-1) consists of two domains, a peripheral arm and a membrane arm. NuoH is a counterpart of ND1, which is one of seven mitochondrially encoded hydrophobic subunits, and is considered to be involved in quinone/inhibitor binding. Sequence comparison in a wide range of species showed that NuoH is comprehensively conserved, particularly with charged residues in the cytoplasmic side loops. We have constructed 40 mutants of 27 conserved residues predicted to be in the cytoplasmic side loops of Escherichia coli NuoH by utilizing the chromosomal DNA manipulation technique and investigated roles of these residues. Mutants of Arg(37), Arg(46), Asp(63), Gly(134), Gly(145), Arg(148), Glu(220), and Glu(228) showed low deamino-NADH-K(3)Fe(CN)(6) reductase activity, undetectable NDH-1 in Blue Native gels, low contents of peripheral subunits (especially NuoB and NuoCD) bound to the membranes, and a significant loss of the membrane potential and proton-pumping function coupled to deamino-NADH oxidation. The results indicated that these conserved residues located in the cytoplasmic side loops are essential for the assembly of the peripheral subunits with the membrane arm. Implications for the involvement of NuoH (ND1) in maintaining the structure and function of NDH-1 are discussed.
Collapse
Affiliation(s)
- Prem Kumar Sinha
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
22
|
Seelert H, Dani DN, Dante S, Hauss T, Krause F, Schäfer E, Frenzel M, Poetsch A, Rexroth S, Schwassmann HJ, Suhai T, Vonck J, Dencher NA. From protons to OXPHOS supercomplexes and Alzheimer's disease: structure-dynamics-function relationships of energy-transducing membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:657-71. [PMID: 19281792 DOI: 10.1016/j.bbabio.2009.02.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 11/29/2022]
Abstract
By the elucidation of high-resolution structures the view of the bioenergetic processes has become more precise. But in the face of these fundamental advances, many problems are still unresolved. We have examined a variety of aspects of energy-transducing membranes from large protein complexes down to the level of protons and functional relevant picosecond protein dynamics. Based on the central role of the ATP synthase for supplying the biological fuel ATP, one main emphasis was put on this protein complex from both chloroplast and mitochondria. In particular the stoichiometry of protons required for the synthesis of one ATP molecule and the supramolecular organisation of ATP synthases were examined. Since formation of supercomplexes also concerns other complexes of the respiratory chain, our work was directed to unravel this kind of organisation, e.g. of the OXPHOS supercomplex I(1)III(2)IV(1), in terms of structure and function. Not only the large protein complexes or supercomplexes work as key players for biological energy conversion, but also small components as quinones which facilitate the transfer of electrons and protons. Therefore, their location in the membrane profile was determined by neutron diffraction. Physico-chemical features of the path of protons from the generators of the electrochemical gradient to the ATP synthase, as well as of their interaction with the membrane surface, could be elucidated by time-resolved absorption spectroscopy in combination with optical pH indicators. Diseases such as Alzheimer's dementia (AD) are triggered by perturbation of membranes and bioenergetics as demonstrated by our neutron scattering studies.
Collapse
Affiliation(s)
- H Seelert
- Department of Chemistry, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zickermann V, Kerscher S, Zwicker K, Tocilescu MA, Radermacher M, Brandt U. Architecture of complex I and its implications for electron transfer and proton pumping. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:574-83. [PMID: 19366614 DOI: 10.1016/j.bbabio.2009.01.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/15/2009] [Accepted: 01/15/2009] [Indexed: 11/27/2022]
Abstract
Proton pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and remains by far the least understood enzyme complex of the respiratory chain. It consists of a peripheral arm harbouring all known redox active prosthetic groups and a membrane arm with a yet unknown number of proton translocation sites. The ubiquinone reduction site close to iron-sulfur cluster N2 at the interface of the 49-kDa and PSST subunits has been mapped by extensive site directed mutagenesis. Independent lines of evidence identified electron transfer events during reduction of ubiquinone to be associated with the potential drop that generates the full driving force for proton translocation with a 4H(+)/2e(-) stoichiometry. Electron microscopic analysis of immuno-labelled native enzyme and of a subcomplex lacking the electron input module indicated a distance of 35-60 A of cluster N2 to the membrane surface. Resolution of the membrane arm into subcomplexes showed that even the distal part harbours subunits that are prime candidates to participate in proton translocation because they are homologous to sodium/proton antiporters and contain conserved charged residues in predicted transmembrane helices. The mechanism of redox linked proton translocation by complex I is largely unknown but has to include steps where energy is transmitted over extremely long distances. In this review we compile the available structural information on complex I and discuss implications for complex I function.
Collapse
Affiliation(s)
- Volker Zickermann
- Goethe-Universität, Fachbereich Medizin, Molekulare Bioenergetik, ZBC, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Challenges in elucidating structure and mechanism of proton pumping NADH:ubiquinone oxidoreductase (complex I). J Bioenerg Biomembr 2008; 40:475-83. [PMID: 18982432 DOI: 10.1007/s10863-008-9171-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 08/01/2008] [Indexed: 12/11/2022]
Abstract
Proton pumping NADH:ubiquinone oxidoreductase (complex I) is the most complicated and least understood enzyme of the respiratory chain. All redox prosthetic groups reside in the peripheral arm of the L-shaped structure. The NADH oxidation domain harbouring the FMN cofactor is connected via a chain of iron-sulfur clusters to the ubiquinone reduction site that is located in a large pocket formed by the PSST- and 49-kDa subunits of complex I. An access path for ubiquinone and different partially overlapping inhibitor binding regions were defined within this pocket by site directed mutagenesis. A combination of biochemical and single particle analysis studies suggests that the ubiquinone reduction site is located well above the membrane domain. Therefore, direct coupling mechanisms seem unlikely and the redox energy must be converted into a conformational change that drives proton pumping across the membrane arm. It is not known which of the subunits and how many are involved in proton translocation. Complex I is a major source of reactive oxygen species (ROS) that are predominantly formed by electron transfer from FMNH(2). Mitochondrial complex I can cycle between active and deactive forms that can be distinguished by the reactivity towards divalent cations and thiol-reactive agents. The physiological role of this phenomenon is yet unclear but it could contribute to the regulation of complex I activity in-vivo.
Collapse
|
25
|
Galkin A, Meyer B, Wittig I, Karas M, Schägger H, Vinogradov A, Brandt U. Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I. J Biol Chem 2008; 283:20907-13. [PMID: 18502755 PMCID: PMC2475694 DOI: 10.1074/jbc.m803190200] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 05/23/2008] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) undergoes reversible deactivation upon incubation at 30-37 degrees C. The active/deactive transition could play an important role in the regulation of complex I activity. It has been suggested recently that complex I may become modified by S-nitrosation under pathological conditions during hypoxia or when the nitric oxide:oxygen ratio increases. Apparently, a specific cysteine becomes accessible to chemical modification only in the deactive form of the enzyme. By selective fluorescence labeling and proteomic analysis, we have identified this residue as cysteine-39 of the mitochondrially encoded ND3 subunit of bovine heart mitochondria. Cysteine-39 is located in a loop connecting the first and second transmembrane helix of this highly hydrophobic subunit. We propose that this loop connects the ND3 subunit of the membrane arm with the PSST subunit of the peripheral arm of complex I, placing it in a region that is known to be critical for the catalytic mechanism of complex I. In fact, mutations in three positions of the loop were previously reported to cause Leigh syndrome with and without dystonia or progressive mitochondrial disease.
Collapse
Affiliation(s)
- Alexander Galkin
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| | - Björn Meyer
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| | - Ilka Wittig
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| | - Michael Karas
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| | - Hermann Schägger
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| | - Andrei Vinogradov
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| | - Ulrich Brandt
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| |
Collapse
|
26
|
Morgan DJ, Sazanov LA. Three-dimensional structure of respiratory complex I from Escherichia coli in ice in the presence of nucleotides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:711-8. [PMID: 18433710 DOI: 10.1016/j.bbabio.2008.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/07/2008] [Accepted: 03/25/2008] [Indexed: 11/24/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the largest protein complex of bacterial and mitochondrial respiratory chains. The first three-dimensional structure of bacterial complex I in vitrified ice was determined by electron cryo-microscopy and single particle analysis. The structure of the Escherichia coli enzyme incubated with either NAD(+) (as a reference) or NADH was calculated to 35 and 39 A resolution, respectively. The X-ray structure of the peripheral arm of Thermus thermophilus complex I was docked into the reference EM structure. The model obtained indicates that Fe-S cluster N2 is close to the membrane domain interface, allowing for effective electron transfer to membrane-embedded quinone. At the current resolution, the structures in the presence of NAD(+) or NADH are similar. Additionally, side-view class averages were calculated for the negatively stained bovine enzyme. The structures of bovine complex I in the presence of either NAD(+) or NADH also appeared to be similar. These observations indicate that conformational changes upon reduction with NADH, suggested to occur by a range of studies, are smaller than had been thought previously. The model of the entire bacterial complex I could be built from the crystal structures of subcomplexes using the EM envelope described here.
Collapse
Affiliation(s)
- David J Morgan
- Medical Research Council, Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
27
|
Torres-Bacete J, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T. Characterization of the NuoM (ND4) Subunit in Escherichia coli NDH-1. J Biol Chem 2007; 282:36914-22. [PMID: 17977822 DOI: 10.1074/jbc.m707855200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jesus Torres-Bacete
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|