1
|
Noureldin NA, Richards J, Kothayer H, Baraka MM, Eladl SM, Wootton M, Simons C. Design, computational studies, synthesis and in vitro antimicrobial evaluation of benzimidazole based thio-oxadiazole and thio-thiadiazole analogues. BMC Chem 2021; 15:58. [PMID: 34711258 PMCID: PMC8555319 DOI: 10.1186/s13065-021-00785-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 01/16/2023] Open
Abstract
Background Two series of benzimidazole based thio-oxadiazole and thio-thiadiazole analogues were designed and synthesised as novel antimicrobial drugs through inhibition of phenylalanyl-tRNA synthetase (PheRS), which is a promising antimicrobial target. Compounds were designed to mimic the structural features of phenylalanyl adenylate (Phe-AMP) the PheRS natural substrate. Methods A 3D conformational alignment for the designed compounds and the PheRS natural substrate revealed a high level of conformational similarity, and a molecular docking study indicated the ability of the designed compounds to occupy both Phe-AMP binding pockets. A molecular dynamics (MD) simulation comparative study was performed to understand the binding interactions with PheRS from different bacterial microorganisms. The synthetic pathway of the designed compounds proceeded in five steps starting from benzimidazole. The fourteen synthesised compounds 5a-d, 6a-c, 8a-d and 9a-c were purified, fully characterised and obtained in high yield. Results In vitro antimicrobial evaluation against five bacterial strains showed a moderate activity of compound 8b with MIC value of 32 μg/mL against S. aureus, while all the synthesised compounds showed weak activity against both E. faecalis and P. aeruginosa (MIC 128 μg/mL). Conclusion Compound 8b provides a lead compound for further structural development to obtain high affinity PheRS inhibitors. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-021-00785-8.
Collapse
Affiliation(s)
- Nada A Noureldin
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK. .,Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C. 44519, Egypt.
| | - Jennifer Richards
- Specialist Antimicrobial Chemotherapy Unit, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW, UK
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C. 44519, Egypt
| | - Mohammed M Baraka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C. 44519, Egypt
| | - Sobhy M Eladl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C. 44519, Egypt
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW, UK
| | - Claire Simons
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
2
|
Michalska K, Jedrzejczak R, Wower J, Chang C, Baragaña B, Gilbert IH, Forte B, Joachimiak A. Mycobacterium tuberculosis Phe-tRNA synthetase: structural insights into tRNA recognition and aminoacylation. Nucleic Acids Res 2021; 49:5351-5368. [PMID: 33885823 PMCID: PMC8136816 DOI: 10.1093/nar/gkab272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 02/02/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, responsible for ∼1.5 million fatalities in 2018, is the deadliest infectious disease. Global spread of multidrug resistant strains is a public health threat, requiring new treatments. Aminoacyl-tRNA synthetases are plausible candidates as potential drug targets, because they play an essential role in translating the DNA code into protein sequence by attaching a specific amino acid to their cognate tRNAs. We report structures of M. tuberculosis Phe-tRNA synthetase complexed with an unmodified tRNAPhe transcript and either L-Phe or a nonhydrolyzable phenylalanine adenylate analog. High-resolution models reveal details of two modes of tRNA interaction with the enzyme: an initial recognition via indirect readout of anticodon stem-loop and aminoacylation ready state involving interactions of the 3′ end of tRNAPhe with the adenylate site. For the first time, we observe the protein gate controlling access to the active site and detailed geometry of the acyl donor and tRNA acceptor consistent with accepted mechanism. We biochemically validated the inhibitory potency of the adenylate analog and provide the most complete view of the Phe-tRNA synthetase/tRNAPhe system to date. The presented topography of amino adenylate-binding and editing sites at different stages of tRNA binding to the enzyme provide insights for the rational design of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jacek Wower
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changsoo Chang
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Beatriz Baragaña
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Barbara Forte
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
3
|
Jeliazkov JR, Robinson AC, García-Moreno E. B, Berger JM, Gray JJ. Toward the computational design of protein crystals with improved resolution. Acta Crystallogr D Struct Biol 2019; 75:1015-1027. [PMID: 31692475 PMCID: PMC6834074 DOI: 10.1107/s2059798319013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/26/2019] [Indexed: 11/10/2022] Open
Abstract
Substantial advances have been made in the computational design of protein interfaces over the last 20 years. However, the interfaces targeted by design have typically been stable and high-affinity. Here, we report the development of a generic computational design method to stabilize the weak interactions at crystallographic interfaces. Initially, we analyzed structures reported in the Protein Data Bank to determine whether crystals with more stable interfaces result in higher resolution structures. We found that for 22 variants of a single protein crystallized by a single individual, the Rosetta-calculated `crystal score' correlates with the reported diffraction resolution. We next developed and tested a computational design protocol, seeking to identify point mutations that would improve resolution in a highly stable variant of staphylococcal nuclease (SNase). Using a protocol based on fixed protein backbones, only one of the 11 initial designs crystallized, indicating modeling inaccuracies and forcing us to re-evaluate our strategy. To compensate for slight changes in the local backbone and side-chain environment, we subsequently designed on an ensemble of minimally perturbed protein backbones. Using this strategy, four of the seven designed proteins crystallized. By collecting diffraction data from multiple crystals per design and solving crystal structures, we found that the designed crystals improved the resolution modestly and in unpredictable ways, including altering the crystal space group. Post hoc, in silico analysis of the three observed space groups for SNase showed that the native space group was the lowest scoring for four of six variants (including the wild type), but that resolution did not correlate with crystal score, as it did in the preliminary results. Collectively, our results show that calculated crystal scores can correlate with reported resolution, but that the correlation is absent when the problem is inverted. This outcome suggests that more comprehensive modeling of the crystallographic state is necessary to design high-resolution protein crystals from poorly diffracting crystals.
Collapse
Affiliation(s)
| | - Aaron C. Robinson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bertrand García-Moreno E.
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - James M. Berger
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey J. Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Exploring the binding sites of Staphylococcus aureus phenylalanine tRNA synthetase: A homology model approach. J Mol Graph Model 2017; 73:36-47. [PMID: 28235746 DOI: 10.1016/j.jmgm.2017.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 02/02/2017] [Indexed: 11/24/2022]
Abstract
Increased resistance of MRSA (multidrug resistance Staphylococcus aureus) to anti-infective drugs is a threat to global health necessitating the development of anti-infectives with novel mechanisms of action. Phenylalanine tRNA synthetase (PheRS) is a unique enzyme of the aminoacyl-tRNA synthetases (aaRSs), which are essential enzymes for protein biosynthesis. PheRS is an (αb)2 tetrameric enzyme composed of two alpha subunits (PheS) and two larger beta subunits (PheT). Our potential target in the drug development for the treatment of MRSA infections is the phenylalanine tRNA synthetase alpha subunit that contains the binding site for the natural substrate. There is no crystal structure available for S. aureus PheRS, therefore comparative structure modeling is required to establish a putative 3D structure for the required enzyme enabling development of new inhibitors with greater selectivity. The S. aureus PheRS alpha subunit homology model was constructed using Molecular Operating Environment (MOE) software. Staphylococcus haemolyticus PheRS was the main template while Thermus thermophilus PheRS was utilised to predict the enzyme binding with tRNAphe. The model has been evaluated and compared with the main template through Ramachandran plots, Verify 3D and Protein Statistical Analysis (ProSA). The query protein active site was predicted from its sequence using a conservation analysis tool. Docking suitable ligands using MOE into the constructed model were used to assess the predicted active sites. The docked ligands involved the PheRS natural substrate (phenylalanine), phenylalanyl-adenylate and several described S. aureus PheRS inhibitors.
Collapse
|
5
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
6
|
Hu Y, Palmer SO, Munoz H, Bullard JM. High Throughput Screen Identifies Natural Product Inhibitor of Phenylalanyl-tRNA Synthetase from Pseudomonas aeruginosa and Streptococcus pneumoniae. Curr Drug Discov Technol 2015; 11:279-92. [PMID: 25601215 DOI: 10.2174/1570163812666150120154701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa and Streptococcus pneumoniae are causative agents in a wide range of infections. Genes encoding proteins corresponding to phenylalanyl-tRNA synthetase (PheRS) were cloned from both bacteria. The two forms of PheRS were kinetically evaluated and the K(m)'s for P. aeruginosa PheRS with its three substrates, phenylalanine, ATP and tRNA(Phe) were determined to be 48, 200, and 1.2 µM, respectively, while the K(m)'s for S. pneumoniae PheRS with respect to phenylalanine, ATP and tRNA(Phe) were 21, 225 and 0.94 µM, respectively. P. aeruginosa and S. pneumoniae PheRS were used to screen a natural compound library and a single compound was identified that inhibited the function of both enzymes. The compound inhibited P. aeruginosa and S. pneumoniae PheRS with IC50's of 2.3 and 4.9 µM, respectively. The compound had a K(I) of 0.83 and 0.98 µM against P. aeruginosa and S. pneumoniae PheRS, respectively. The minimum inhibitory concentration (MIC) of the compound was determined against a panel of Gram positive and negative bacteria including efflux pump mutants and hyper-sensitive strains. MICs against wild-type P. aeruginosa and S. pneumoniae cells in culture were determined to be 16 and 32 µg/ml, respectively. The mechanism of action of the compound was determined to be competitive with the amino acid, phenylalanine, and uncompetitive with ATP. There was no inhibition of cytoplasmic protein synthesis, however, partial inhibition of the human mitochondrial PheRS was observed.
Collapse
Affiliation(s)
| | | | | | - James M Bullard
- Chemistry Department, SCIE. 3.320, The University of Texas-Pan American, 1201 W. University Drive, Edinburg, TX 78541, USA.
| |
Collapse
|
7
|
Koh CY, Kallur Siddaramaiah L, Ranade RM, Nguyen J, Jian T, Zhang Z, Gillespie JR, Buckner FS, Verlinde CLMJ, Fan E, Hol WGJ. A binding hotspot in Trypanosoma cruzi histidyl-tRNA synthetase revealed by fragment-based crystallographic cocktail screens. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1684-98. [PMID: 26249349 PMCID: PMC4528801 DOI: 10.1107/s1399004715007683] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/18/2015] [Indexed: 01/04/2023]
Abstract
American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallographically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS.
Collapse
Affiliation(s)
- Cho Yeow Koh
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Ranae M. Ranade
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jasmine Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tengyue Jian
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Wim G. J. Hol
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Abibi A, Ferguson AD, Fleming PR, Gao N, Hajec LI, Hu J, Laganas VA, McKinney DC, McLeod SM, Prince DB, Shapiro AB, Buurman ET. The role of a novel auxiliary pocket in bacterial phenylalanyl-tRNA synthetase druggability. J Biol Chem 2014; 289:21651-62. [PMID: 24936059 DOI: 10.1074/jbc.m114.574061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antimicrobial activity of phenyl-thiazolylurea-sulfonamides against Staphylococcus aureus PheRS are dependent upon phenylalanine levels in the extracellular fluids. Inhibitor efficacy in animal models of infection is substantially diminished by dietary phenylalanine intake, thereby reducing the perceived clinical utility of this inhibitor class. The search for novel antibacterial compounds against Gram-negative pathogens led to a re-evaluation of this phenomenon, which is shown here to be unique to S. aureus. Inhibition of macromolecular syntheses and characterization of novel resistance mutations in Escherichia coli demonstrate that antimicrobial activity of phenyl-thiazolylurea-sulfonamides is mediated by PheRS inhibition, validating this enzyme as a viable drug discovery target for Gram-negative pathogens. A search for novel inhibitors of PheRS yielded three novel chemical starting points. NMR studies were used to confirm direct target engagement for phenylalanine-competitive hits. The crystallographic structure of Pseudomonas aeruginosa PheRS defined the binding modes of these hits and revealed an auxiliary hydrophobic pocket that is positioned adjacent to the phenylalanine binding site. Three viable inhibitor-resistant mutants were mapped to this pocket, suggesting that this region is a potential liability for drug discovery.
Collapse
Affiliation(s)
| | - Andrew D Ferguson
- the Department of Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | | | - Ning Gao
- From the Departments of Biosciences and
| | | | - Jun Hu
- the Department of Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | | | | | | | - D Bryan Prince
- the Department of Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | | | | |
Collapse
|
9
|
Chitnumsub P, Ittarat W, Jaruwat A, Noytanom K, Amornwatcharapong W, Pornthanakasem W, Chaiyen P, Yuthavong Y, Leartsakulpanich U. The structure of Plasmodium falciparum serine hydroxymethyltransferase reveals a novel redox switch that regulates its activities. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1517-27. [PMID: 24914963 PMCID: PMC4051499 DOI: 10.1107/s1399004714005598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/11/2014] [Indexed: 11/10/2022]
Abstract
Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Å resolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similar to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme.
Collapse
Affiliation(s)
- Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Wanwipa Ittarat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Krittikar Noytanom
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Watcharee Amornwatcharapong
- Department of Biochemistry and Center for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wichai Pornthanakasem
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
10
|
Duff SM, Rydel TJ, McClerren AL, Zhang W, Li JY, Sturman EJ, Halls C, Chen S, Zeng J, Peng J, Kretzler CN, Evdokimov A. The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure. Arch Biochem Biophys 2012; 528:90-101. [DOI: 10.1016/j.abb.2012.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/15/2022]
|
11
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
12
|
Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 2012; 51:8705-29. [PMID: 23075299 DOI: 10.1021/bi301180x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are the enzymes that ensure faithful transmission of genetic information in all living cells, and are central to the developing technologies for expanding the capacity of the translation apparatus to incorporate nonstandard amino acids into proteins in vivo. The 24 known aaRS families are divided into two classes that exhibit functional evolutionary convergence. Each class features an active site domain with a common fold that binds ATP, the amino acid, and the 3'-terminus of tRNA, embellished by idiosyncratic further domains that bind distal portions of the tRNA and enhance specificity. Fidelity in the expression of the genetic code requires that the aaRS be selective for both amino acids and tRNAs, a substantial challenge given the presence of structurally very similar noncognate substrates of both types. Here we comprehensively review central themes concerning the architectures of the protein structures and the remarkable dual-substrate selectivities, with a view toward discerning the most important issues that still substantially limit our capacity for rational protein engineering. A suggested general approach to rational design is presented, which should yield insight into the identities of the protein-RNA motifs at the heart of the genetic code, while also offering a basis for improving the catalytic properties of engineered tRNA synthetases emerging from genetic selections.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States.
| | | |
Collapse
|
13
|
Kast P. Making Proteins with Unnatural Amino Acids: The First Engineered Aminoacyl-tRNA Synthetase Revisited. Chembiochem 2011; 12:2395-8. [DOI: 10.1002/cbic.201100533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Indexed: 11/07/2022]
|
14
|
Montgomery JI, Toogood PL, Hutchings KM, Liu J, Narasimhan L, Braden T, Dermyer MR, Kulynych AD, Smith YD, Warmus JS, Taylor C. Discovery and SAR of benzyl phenyl ethers as inhibitors of bacterial phenylalanyl-tRNA synthetase. Bioorg Med Chem Lett 2008; 19:665-9. [PMID: 19121937 DOI: 10.1016/j.bmcl.2008.12.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
Abstract
A series of benzyl phenyl ethers (BPEs) is described that displays potent inhibition of bacterial phenylalanyl-tRNA synthetase. The synthesis, SAR, and select ADMET data are provided.
Collapse
Affiliation(s)
- Justin I Montgomery
- Pfizer Global Research and Development, Michigan Laboratories, Ann Arbor Campus, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|