1
|
Brown A, Long F, Nicholls RA, Toots J, Emsley P, Murshudov G. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:136-53. [PMID: 25615868 PMCID: PMC4304694 DOI: 10.1107/s1399004714021683] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/01/2014] [Indexed: 11/24/2022]
Abstract
The recent rapid development of single-particle electron cryo-microscopy (cryo-EM) now allows structures to be solved by this method at resolutions close to 3 Å. Here, a number of tools to facilitate the interpretation of EM reconstructions with stereochemically reasonable all-atom models are described. The BALBES database has been repurposed as a tool for identifying protein folds from density maps. Modifications to Coot, including new Jiggle Fit and morphing tools and improved handling of nucleic acids, enhance its functionality for interpreting EM maps. REFMAC has been modified for optimal fitting of atomic models into EM maps. As external structural information can enhance the reliability of the derived atomic models, stabilize refinement and reduce overfitting, ProSMART has been extended to generate interatomic distance restraints from nucleic acid reference structures, and a new tool, LIBG, has been developed to generate nucleic acid base-pair and parallel-plane restraints. Furthermore, restraint generation has been integrated with visualization and editing in Coot, and these restraints have been applied to both real-space refinement in Coot and reciprocal-space refinement in REFMAC.
Collapse
Affiliation(s)
- Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Fei Long
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Robert A. Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Jaan Toots
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Garib Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| |
Collapse
|
2
|
Kubrycht J, Sigler K, Souček P, Hudeček J. Structures composing protein domains. Biochimie 2013; 95:1511-24. [DOI: 10.1016/j.biochi.2013.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/02/2013] [Indexed: 12/21/2022]
|
3
|
Structural characterization of cleaved, soluble HIV-1 envelope glycoprotein trimers. J Virol 2013; 87:9865-72. [PMID: 23824817 DOI: 10.1128/jvi.01222-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is a significant global public health problem for which development of an effective prophylactic vaccine remains a high scientific priority. Many concepts for a vaccine are focused on induction of appropriate titers of broadly neutralizing antibodies (bNAbs) against the viral envelope (Env) glycoproteins gp120 and gp41, but no immunogen has yet accomplished this goal in animals or humans. One approach to induction of bNAbs is to design soluble, trimeric mimics of the native viral Env trimer. Here, we describe structural studies by negative-stain electron microscopy of several variants of soluble Env trimers based on the KNH1144 subtype A sequence. These Env trimers are fully cleaved between the gp120 and gp41 components and stabilized by specific amino acid substitutions. We also illustrate the structural consequences of deletion of the V1/V2 and V3 variable loops from gp120 and the membrane-proximal external region (MPER) from gp41. All of these variants adopt a trimeric configuration that appropriately mimics native Env spikes, including the CD4 receptor-binding site and the epitope for the VRC PG04 bNAb. These cleaved, soluble trimer designs can be adapted for use with multiple different env genes for both vaccine and structural studies.
Collapse
|
4
|
Saha M, Morais MC. FOLD-EM: automated fold recognition in medium- and low-resolution (4-15 Å) electron density maps. ACTA ACUST UNITED AC 2012; 28:3265-73. [PMID: 23131460 DOI: 10.1093/bioinformatics/bts616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Owing to the size and complexity of large multi-component biological assemblies, the most tractable approach to determining their atomic structure is often to fit high-resolution radiographic or nuclear magnetic resonance structures of isolated components into lower resolution electron density maps of the larger assembly obtained using cryo-electron microscopy (cryo-EM). This hybrid approach to structure determination requires that an atomic resolution structure of each component, or a suitable homolog, is available. If neither is available, then the amount of structural information regarding that component is limited by the resolution of the cryo-EM map. However, even if a suitable homolog cannot be identified using sequence analysis, a search for structural homologs should still be performed because structural homology often persists throughout evolution even when sequence homology is undetectable, As macromolecules can often be described as a collection of independently folded domains, one way of searching for structural homologs would be to systematically fit representative domain structures from a protein domain database into the medium/low resolution cryo-EM map and return the best fits. Taken together, the best fitting non-overlapping structures would constitute a 'mosaic' backbone model of the assembly that could aid map interpretation and illuminate biological function. RESULT Using the computational principles of the Scale-Invariant Feature Transform (SIFT), we have developed FOLD-EM-a computational tool that can identify folded macromolecular domains in medium to low resolution (4-15 Å) electron density maps and return a model of the constituent polypeptides in a fully automated fashion. As a by-product, FOLD-EM can also do flexible multi-domain fitting that may provide insight into conformational changes that occur in macromolecular assemblies.
Collapse
Affiliation(s)
- Mitul Saha
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 7555-0647, USA.
| | | |
Collapse
|
5
|
Zhang Q, Bettadapura R, Bajaj C. Macromolecular structure modeling from 3D EM using VolRover 2.0. Biopolymers 2012; 97:709-31. [PMID: 22696407 DOI: 10.1002/bip.22052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We review tools for structure identification and model-based refinement from three-dimensional electron microscopy implemented in our in-house software package, VOLROVER 2.0. For viral density maps with icosahedral symmetry, we segment the capsid, polymeric, and monomeric subunits using techniques based on automatic symmetry detection and multidomain fast marching. For large biomolecules without symmetry information, we again use our multidomain fast-marching method with manual or fit-based multiseeding to segment meaningful substructures. In either case, we subject the resulting segmented subunit to secondary structure detection when the EM resolution is sufficiently high, and rigid-body structure fitting when the corresponding X-ray structure is available. Secondary structure elements are identified by three techniques: our earlier volume-based and boundary-based skeletonization methods as well as a new method, currently in development, based on solving the grassfire flow equation. For rigid-body fitting, we adapt our earlier fast Fourier-based correlation scheme F2Dock. Our reported segmentation, secondary structure elements identification, and rigid-body fitting techniques, implemented in VOLROVER 2.0 are applied to the PSB 2011 cryo-EM modeling challenge data, and our results are briefly compared to similar results submitted from other research groups. The comparisons show that our techniques are equally capable of segmenting relatively accurate subunits from a viral or protein assembly, and that high segmentation quality leads in turn to higher-quality results of secondary structure elements identification and correlation-based rigid-body fitting. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 709-731, 2012.
Collapse
Affiliation(s)
- Qin Zhang
- Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX 78712, USA
| | | | | |
Collapse
|
6
|
Henderson R, Sali A, Baker ML, Carragher B, Devkota B, Downing KH, Egelman EH, Feng Z, Frank J, Grigorieff N, Jiang W, Ludtke SJ, Medalia O, Penczek PA, Rosenthal PB, Rossmann MG, Schmid MF, Schröder GF, Steven AC, Stokes DL, Westbrook JD, Wriggers W, Yang H, Young J, Berman HM, Chiu W, Kleywegt GJ, Lawson CL. Outcome of the first electron microscopy validation task force meeting. Structure 2012; 20:205-14. [PMID: 22325770 PMCID: PMC3328769 DOI: 10.1016/j.str.2011.12.014] [Citation(s) in RCA: 375] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/29/2011] [Accepted: 12/29/2011] [Indexed: 11/10/2022]
Abstract
This Meeting Review describes the proceedings and conclusions from the inaugural meeting of the Electron Microscopy Validation Task Force organized by the Unified Data Resource for 3DEM (http://www.emdatabank.org) and held at Rutgers University in New Brunswick, NJ on September 28 and 29, 2010. At the workshop, a group of scientists involved in collecting electron microscopy data, using the data to determine three-dimensional electron microscopy (3DEM) density maps, and building molecular models into the maps explored how to assess maps, models, and other data that are deposited into the Electron Microscopy Data Bank and Protein Data Bank public data archives. The specific recommendations resulting from the workshop aim to increase the impact of 3DEM in biology and medicine.
Collapse
Affiliation(s)
- Richard Henderson
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lasker K, Velázquez-Muriel JA, Webb BM, Yang Z, Ferrin TE, Sali A. Macromolecular assembly structures by comparative modeling and electron microscopy. Methods Mol Biol 2012; 857:331-350. [PMID: 22323229 DOI: 10.1007/978-1-61779-588-6_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Advances in electron microscopy allow for structure determination of large biological machines at increasingly higher resolutions. A key step in this process is fitting component structures into the electron microscopy-derived density map of their assembly. Comparative modeling can contribute by providing atomic models of the components, via fold assignment, sequence-structure alignment, model building, and model assessment. All four stages of comparative modeling can also benefit from consideration of the density map. In this chapter, we describe numerous types of modeling problems restrained by a density map and available protocols for finding solutions. In particular, we provide detailed instructions for density map-guided modeling using the Integrative Modeling Platform (IMP), MODELLER, and UCSF Chimera.
Collapse
Affiliation(s)
- Keren Lasker
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Bajaj C, Goswami S, Zhang Q. Detection of secondary and supersecondary structures of proteins from cryo-electron microscopy. J Struct Biol 2011; 177:367-81. [PMID: 22186625 DOI: 10.1016/j.jsb.2011.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 11/09/2011] [Accepted: 11/15/2011] [Indexed: 11/30/2022]
Abstract
Recent advances in three-dimensional electron microscopy (3D EM) have enabled the quantitative visualization of the structural building blocks of proteins at improved resolutions. We provide algorithms to detect the secondary structures (α-helices and β-sheets) from proteins for which the volumetric maps are reconstructed at 6-10Å resolution. Additionally, we show that when the resolution is coarser than 10Å, some of the supersecondary structures can be detected from 3D EM maps. For both these algorithms, we employ tools from computational geometry and differential topology, specifically the computation of stable/unstable manifolds of certain critical points of the distance function induced by the molecular surface. Our results connect mathematically well-defined constructions with bio-chemically induced structures observed in proteins.
Collapse
Affiliation(s)
- Chandrajit Bajaj
- Center for Computational Visualization, The Institute for Computational Engineering and Sciences, Department of Computer Science, The University of Texas at Austin, University Station C0200, Austin, TX 78712, USA.
| | | | | |
Collapse
|