1
|
Zhu G, Liu W, Bao C, Tong D, Ji H, Shen Z, Yang D, Lu L. Investigating energy-based pool structure selection in the structure ensemble modeling with experimental distance constraints: The example from a multidomain protein Pub1. Proteins 2018; 86:501-514. [PMID: 29383828 DOI: 10.1002/prot.25468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/26/2017] [Accepted: 01/23/2018] [Indexed: 12/25/2022]
Abstract
The structural variations of multidomain proteins with flexible parts mediate many biological processes, and a structure ensemble can be determined by selecting a weighted combination of representative structures from a simulated structure pool, producing the best fit to experimental constraints such as interatomic distance. In this study, a hybrid structure-based and physics-based atomistic force field with an efficient sampling strategy is adopted to simulate a model di-domain protein against experimental paramagnetic relaxation enhancement (PRE) data that correspond to distance constraints. The molecular dynamics simulations produce a wide range of conformations depicted on a protein energy landscape. Subsequently, a conformational ensemble recovered with low-energy structures and the minimum-size restraint is identified in good agreement with experimental PRE rates, and the result is also supported by chemical shift perturbations and small-angle X-ray scattering data. It is illustrated that the regularizations of energy and ensemble-size prevent an arbitrary interpretation of protein conformations. Moreover, energy is found to serve as a critical control to refine the structure pool and prevent data overfitting, because the absence of energy regularization exposes ensemble construction to the noise from high-energy structures and causes a more ambiguous representation of protein conformations. Finally, we perform structure-ensemble optimizations with a topology-based structure pool, to enhance the understanding on the ensemble results from different sources of pool candidates.
Collapse
Affiliation(s)
- Guanhua Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Wei Liu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Chenglong Bao
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore, 119076, Singapore.,Yau Mathematical Sciences Center, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Dudu Tong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Hui Ji
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore, 119076, Singapore
| | - Zuowei Shen
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore, 119076, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
2
|
Liu W, Zhang J, Fan JS, Tria G, Grüber G, Yang D. A New Method for Determining Structure Ensemble: Application to a RNA Binding Di-Domain Protein. Biophys J 2016; 110:1943-56. [PMID: 27166803 PMCID: PMC4939551 DOI: 10.1016/j.bpj.2016.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 10/21/2022] Open
Abstract
Structure ensemble determination is the basis of understanding the structure-function relationship of a multidomain protein with weak domain-domain interactions. Paramagnetic relaxation enhancement has been proven a powerful tool in the study of structure ensembles, but there exist a number of challenges such as spin-label flexibility, domain dynamics, and overfitting. Here we propose a new (to our knowledge) method to describe structure ensembles using a minimal number of conformers. In this method, individual domains are considered rigid; the position of each spin-label conformer and the structure of each protein conformer are defined by three and six orthogonal parameters, respectively. First, the spin-label ensemble is determined by optimizing the positions and populations of spin-label conformers against intradomain paramagnetic relaxation enhancements with a genetic algorithm. Subsequently, the protein structure ensemble is optimized using a more efficient genetic algorithm-based approach and an overfitting indicator, both of which were established in this work. The method was validated using a reference ensemble with a set of conformers whose populations and structures are known. This method was also applied to study the structure ensemble of the tandem di-domain of a poly (U) binding protein. The determined ensemble was supported by small-angle x-ray scattering and nuclear magnetic resonance relaxation data. The ensemble obtained suggests an induced fit mechanism for recognition of target RNA by the protein.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jingfeng Zhang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Giancarlo Tria
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Harnessing natural sequence variation to dissect posttranscriptional regulatory networks in yeast. G3-GENES GENOMES GENETICS 2014; 4:1539-53. [PMID: 24938291 PMCID: PMC4132183 DOI: 10.1534/g3.114.012039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding how genomic variation influences phenotypic variation through the molecular networks of the cell is one of the central challenges of biology. Transcriptional regulation has received much attention, but equally important is the posttranscriptional regulation of mRNA stability. Here we applied a systems genetics approach to dissect posttranscriptional regulatory networks in the budding yeast Saccharomyces cerevisiae. Quantitative sequence-to-affinity models were built from high-throughput in vivo RNA binding protein (RBP) binding data for 15 yeast RBPs. Integration of these models with genome-wide mRNA expression data allowed us to estimate protein-level RBP regulatory activity for individual segregants from a genetic cross between two yeast strains. Treating these activities as a quantitative trait, we mapped trans-acting loci (activity quantitative trait loci, or aQTLs) that act via posttranscriptional regulation of transcript stability. We predicted and experimentally confirmed that a coding polymorphism at the IRA2 locus modulates Puf4p activity. Our results also indicate that Puf3p activity is modulated by distinct loci, depending on whether it acts via the 5′ or the 3′ untranslated region of its target mRNAs. Together, our results validate a general strategy for dissecting the connectivity between posttranscriptional regulators and their upstream signaling pathways.
Collapse
|
4
|
HuR thermal stability is dependent on domain binding and upon phosphorylation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:597-605. [PMID: 22706953 DOI: 10.1007/s00249-012-0827-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/10/2012] [Accepted: 05/28/2012] [Indexed: 12/22/2022]
Abstract
Human antigen R (HuR) is a multitasking RNA binding protein involved in posttranscriptional regulation by recognizing adenine- and uracile-rich elements placed at the 3'-untranslated regions of messenger RNAs (mRNAs). The modular architecture of the protein, which consists of two N-terminal RNA recognition motifs (RRMs) in tandem spaced from a third one by a nuclear-cytoplasmic shuttling sequence, controls the stability of many mRNA targets, as well as their translation rates. A higher level of regulation comes from the fact that both localization and function of HuR are strictly regulated by phosphorylation. Here, we report how the thermal stability of RRM2 is decreased by the presence of RRM1, indicating that both domains are interacting in solution. In addition, even though no significant structural changes are observed among mutants of HuR RRM12 mimicking phosphorylated species, slight differences in stability are appreciable, which may explain the RNA binding activity of HuR.
Collapse
|
5
|
Santiveri CM, Mirassou Y, Rico-Lastres P, Martínez-Lumbreras S, Pérez-Cañadillas JM. Pub1p C-terminal RRM domain interacts with Tif4631p through a conserved region neighbouring the Pab1p binding site. PLoS One 2011; 6:e24481. [PMID: 21931728 PMCID: PMC3169606 DOI: 10.1371/journal.pone.0024481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 08/11/2011] [Indexed: 11/18/2022] Open
Abstract
Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1-402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role.
Collapse
Affiliation(s)
- Clara M. Santiveri
- Department of Biological Physical Chemistry, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
| | - Yasmina Mirassou
- Department of Biological Physical Chemistry, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
| | - Palma Rico-Lastres
- Department of Biological Physical Chemistry, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
| | | | | |
Collapse
|
6
|
Aroca A, Díaz-Quintana A, Díaz-Moreno I. A structural insight into the C-terminal RNA recognition motifs of T-cell intracellular antigen-1 protein. FEBS Lett 2011; 585:2958-64. [PMID: 21846467 DOI: 10.1016/j.febslet.2011.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/26/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
T-cell intracellular antigen-1 (TIA-1) plays a pleiotropic role in cell homeostasis through the regulation of alternative pre-mRNA splicing and mRNA translation by recognising uridine-rich sequences of RNAs. TIA-1 contains three RNA recognition motifs (RRMs) and a glutamine-rich domain. Here, we characterise its C-terminal RRM2 and RRM3 domains. Notably, RRM3 contains an extra novel N-terminal α-helix (α(1)) which protects its single tryptophan from the solvent exposure, even in the two-domain RRM23 context. The α(1) hardly affects the thermal stability of RRM3. On the contrary, RRM2 destabilises RRM3, indicating that both modules are tumbling together, which may influence the RNA binding activity of TIA-1.
Collapse
Affiliation(s)
- Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| | | | | |
Collapse
|