1
|
Heymann JB. Structural Studies of Bacteriophage Φ6 and Its Transformations during Its Life Cycle. Viruses 2023; 15:2404. [PMID: 38140645 PMCID: PMC10747372 DOI: 10.3390/v15122404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
From the first isolation of the cystovirus bacteriophage Φ6 from Pseudomonas syringae 50 years ago, we have progressed to a better understanding of the structure and transformations of many parts of the virion. The three-layered virion, encapsulating the tripartite double-stranded RNA (dsRNA) genome, breaches the cell envelope upon infection, generates its own transcripts, and coopts the bacterial machinery to produce its proteins. The generation of a new virion starts with a procapsid with a contracted shape, followed by the packaging of single-stranded RNA segments with concurrent expansion of the capsid, and finally replication to reconstitute the dsRNA genome. The outer two layers are then added, and the fully formed virion released by cell lysis. Most of the procapsid structure, composed of the proteins P1, P2, P4, and P7 is now known, as well as its transformations to the mature, packaged nucleocapsid. The outer two layers are less well-studied. One additional study investigated the binding of the host protein YajQ to the infecting nucleocapsid, where it enhances the transcription of the large RNA segment that codes for the capsid proteins. Finally, I relate the structural aspects of bacteriophage Φ6 to those of other dsRNA viruses, noting the similarities and differences.
Collapse
Affiliation(s)
- J. Bernard Heymann
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA; ; Tel.: +1-301-846-6924
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| |
Collapse
|
2
|
Gottlieb P, Alimova A. Discovery and Classification of the φ6 Bacteriophage: An Historical Review. Viruses 2023; 15:1308. [PMID: 37376608 DOI: 10.3390/v15061308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The year 2023 marks the fiftieth anniversary of the discovery of the bacteriophage φ6. The review provides a look back on the initial discovery and classification of the lipid-containing and segmented double-stranded RNA (dsRNA) genome-containing bacteriophage-the first identified cystovirus. The historical discussion describes, for the most part, the first 10 years of the research employing contemporary mutation techniques, biochemical, and structural analysis to describe the basic outline of the virus replication mechanisms and structure. The physical nature of φ6 was initially controversial as it was the first bacteriophage found that contained segmented dsRNA, resulting in a series of early publications that defined the unusual genomic quality. The technology and methods utilized in the initial research (crude by current standards) meant that the first studies were quite time-consuming, hence the lengthy period covered by this review. Yet when the data were accepted, the relationship to the reoviruses was apparent, launching great interest in cystoviruses, research that continues to this day.
Collapse
Affiliation(s)
- Paul Gottlieb
- Department of Molecular, Cellular and Biomedical Sciences, The City University of New York School of Medicine, New York, NY 10031, USA
| | - Aleksandra Alimova
- Department of Molecular, Cellular and Biomedical Sciences, The City University of New York School of Medicine, New York, NY 10031, USA
| |
Collapse
|
3
|
Gottlieb P, Alimova A. RNA Packaging in the Cystovirus Bacteriophages: Dynamic Interactions during Capsid Maturation. Int J Mol Sci 2022; 23:ijms23052677. [PMID: 35269819 PMCID: PMC8910881 DOI: 10.3390/ijms23052677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
The bacteriophage family Cystoviridae consists of a single genus, Cystovirus, that is lipid-containing with three double-stranded RNA (ds-RNA) genome segments. With regard to the segmented dsRNA genome, they resemble the family Reoviridae. Therefore, the Cystoviruses have long served as a simple model for reovirus assembly. This review focuses on important developments in the study of the RNA packaging and replication mechanisms, emphasizing the structural conformations and dynamic changes during maturation of the five proteins required for viral RNA synthesis, P1, P2, P4, P7, and P8. Together these proteins constitute the procapsid/polymerase complex (PC) and nucleocapsid (NC) of the Cystoviruses. During viral assembly and RNA packaging, the five proteins must function in a coordinated fashion as the PC and NC undergo expansion with significant position translation. The review emphasizes this facet of the viral assembly process and speculates on areas suggestive of additional research efforts.
Collapse
|
4
|
Zhang C, Li Y, Samad A, Zheng P, Ji Z, Chen F, Zhang H, Jin T. Structure and mutation analysis of the hexameric P4 from Pseudomonas aeruginosa phage phiYY. Int J Biol Macromol 2022; 194:42-49. [PMID: 34856215 DOI: 10.1016/j.ijbiomac.2021.11.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
phiYY is a foremost member of Cystoviridae isolated from Pseudomonas aeruginosa. Its P4 protein with NTPase activity is a molecular motor for their genome packing during viral particle assembly. Previously studies on the P4 from four Pseudomonas phages phi6, phi8, phi12 and phi13 reveal that despite of belonging to the same protein family, they are unique in sequence, structure and biochemical properties. To better understand the structure and function of phiYY P4, four crystal structures of phiYY P4 in apo-form or combined with different ligands were solved at the resolution between 1.85 Å and 2.43 Å, which showed drastic conformation change of the H1 motif in ligand-bound forms compared with in apo-form, a four residue-mutation at the ligand binding pocket abolished its ATPase activity. Furthermore, the truncation mutation of the 50 residues at the C-terminal did not impair the hexamerization and ATP hydrolysis.
Collapse
Affiliation(s)
- Caiying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yuelong Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Abdus Samad
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Peiyi Zheng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Zheng Ji
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Feng Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; CAS Center for Excellence in Molecular Cell Science, Shanghai, China.
| |
Collapse
|
5
|
Heymann JB. High resolution electron tomography and segmentation-by-modeling interpretation in Bsoft. Protein Sci 2021; 30:44-59. [PMID: 32852078 PMCID: PMC7737767 DOI: 10.1002/pro.3938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/11/2022]
Abstract
Bsoft offers many tools for the processing of tomographic tilt series and the interpretation of tomograms. Since I introduced tomography into Bsoft almost two decades ago, the field has advanced significantly, requiring refinement of old algorithms and development of new ones. The current direct detectors allow us to collect data more efficiently and with better quality, progressing towards automation. The goal is then to also automate alignment of tilt series and reconstruction. I added an estimation of the specimen thickness as well as fiducialless alignment, to augment the existing fiducial-based alignment. High-resolution work requires correction for the contrast transfer function, in tomography complicated by the tilted specimen. For this, I developed a method to generate a power spectrum using the whole micrograph, compensating for tilting. This is followed by routine determination of the contrast transfer function, and correction for it during reconstruction. The next steps involve interpretation of the tomogram, either by subtomogram averaging where possible, or by segmentation and modeling otherwise. Such interpretation actually constitutes the main time-consuming part of tomography and is less amenable to automation compared to the initial reconstruction.
Collapse
Affiliation(s)
- J. Bernard Heymann
- Laboratory for Structural Biology ResearchNational Institute of Arthritis, Musculoskeletal and Skin Diseases, NIHBethesdaMarylandUSA
| |
Collapse
|
6
|
Konevtsova OV, Roshal DS, Podgornik R, Rochal SB. Irreversible and reversible morphological changes in the φ6 capsid and similar viral shells: symmetry and micromechanics. SOFT MATTER 2020; 16:9383-9392. [PMID: 32945317 DOI: 10.1039/d0sm01338b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the physicochemical processes occurring in viruses during their maturation is of fundamental importance since only mature viruses can infect host cells. Here we consider the irreversible and reversible morphological changes that occur with the dodecahedral φ6 procapsid during the sequential packaging of 3 RNA segments forming the viral genome. It is shown that the dodecahedral shape of all the four observed capsid states is perfectly reproduced by a sphere radially deformed by only two irreducible spherical harmonics with icosahedral symmetry and wave numbers l = 6 and l = 10. The rotation of proteins around the 3-fold axes at the Procapsid → Intermediate 1 irreversible transformation is in fact also well described with the shear field containing only two irreducible harmonics with the same two wave numbers. The high stability of the Intermediate 1 state is discussed and the shapes of the Intermediate 2 state and Capsid (reversibly transforming back to the Intermediate 1 state) are shown to be mainly due to the isotropic pressure that the encapsidated RNA segments exert on the shell walls. The hidden symmetry of the capsid and the physicochemical features of the in vitro genome extraction from the viral shell are also elucidated.
Collapse
Affiliation(s)
- Olga V Konevtsova
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia.
| | - Daria S Roshal
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia.
| | - Rudolf Podgornik
- Department of Theoretical Physics, JoŽef Stefan Institute, SI-1000 Ljubljana, Slovenia and Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia and School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Sergei B Rochal
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia.
| |
Collapse
|
7
|
Zhong Q, Yang L, Li L, Shen W, Li Y, Xu H, Zhong Z, Chen M, Le S. Transcriptomic Analysis Reveals the Dependency of Pseudomonas aeruginosa Genes for Double-Stranded RNA Bacteriophage phiYY Infection Cycle. iScience 2020; 23:101437. [PMID: 32827855 PMCID: PMC7452160 DOI: 10.1016/j.isci.2020.101437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteriophage phiYY is currently the only double-stranded RNA (dsRNA) phage that infects Pseudomonas aeruginosa and is a potential candidate for phage therapy. Here we applied RNA-seq to investigate the lytic cycle of phiYY infecting P. aeruginosa strain PAO1r. About 12.45% (651/5,229) of the host genes were determined to be differentially expressed genes. Moreover, oxidative stress response genes katB and ahpB are upregulated 64- to 128-fold after phage infection, and the single deletion of each gene blocked phiYY infection, indicating that phiYY is extremely sensitive to oxidative stress. On the contrary, another upregulated gene PA0800 might constrain phage infection, because the deletion of PA0800 resulted in a 3.5-fold increase of the efficiency of plating. Our study highlights a complicated dsRNA phage-phage global interaction and raises new questions toward the host defense mechanisms against dsRNA phage and dsRNA phage-encoded hijacking mechanisms.
Collapse
Affiliation(s)
- Qiu Zhong
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
- Department of Clinical Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing 400038, China
| | - Lan Yang
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Linlin Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Wei Shen
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yang Li
- Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, Chongqing 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injuries, Army Medical University, Chongqing 400038, China
| | - Huan Xu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Zhuojun Zhong
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injuries, Army Medical University, Chongqing 400038, China
| | - Shuai Le
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| |
Collapse
|
8
|
Kaelber JT, Jiang W, Weaver SC, Auguste AJ, Chiu W. Arrangement of the Polymerase Complexes inside a Nine-Segmented dsRNA Virus. Structure 2020; 28:604-612.e3. [PMID: 32049031 PMCID: PMC7289189 DOI: 10.1016/j.str.2020.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022]
Abstract
Members of the family Reoviridae package several copies of the viral polymerase complex into their capsid to carry out replication and transcription within viral particles. Classical single-particle reconstruction encounters difficulties resolving structures such as the intraparticle polymerase complex because refinement can converge to an incorrect map and because the map could depict a nonrepresentative subset of particles or an average of heterogeneous particles. Using the nine-segmented Fako virus, we tested hypotheses for the arrangement and number of polymerase complexes within the virion by measuring how well each hypothesis describes the set of cryoelectron microscopy images of individual viral particles. We find that the polymerase complex in Fako virus binds at ten possible sites despite having only nine genome segments. A single asymmetric configuration describes the arrangement of these complexes in both virions and genome-free capsids. Similarities between the arrangements of Reoviridae with 9, 10, and 11 segments indicate the generalizability of this architecture.
Collapse
Affiliation(s)
- Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Wen Jiang
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Albert J Auguste
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Wah Chiu
- Department of Bioengineering, Department of Microbiology and Immunology, and James H. Clark Center, Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
Borodavka A, Desselberger U, Patton JT. Genome packaging in multi-segmented dsRNA viruses: distinct mechanisms with similar outcomes. Curr Opin Virol 2018; 33:106-112. [PMID: 30145433 PMCID: PMC6289821 DOI: 10.1016/j.coviro.2018.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Segmented double-stranded (ds)RNA viruses share remarkable similarities in their replication strategy and capsid structure. During virus replication, positive-sense single-stranded (+)RNAs are packaged into procapsids, where they serve as templates for dsRNA synthesis, forming progeny particles containing a complete equimolar set of genome segments. How the +RNAs are recognized and stoichiometrically packaged remains uncertain. Whereas bacteriophages of the Cystoviridae family rely on specific RNA-protein interactions to select appropriate +RNAs for packaging, viruses of the Reoviridae instead rely on specific inter-molecular interactions between +RNAs that guide multi-segmented genome assembly. While these families use distinct mechanisms to direct +RNA packaging, both yield progeny particles with a complete set of genomic dsRNAs.
Collapse
Affiliation(s)
- Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Ulrich Desselberger
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John T Patton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
10
|
Abstract
Double-stranded RNA viruses infect a wide spectrum of hosts, including animals, plants, fungi, and bacteria. Yet genome replication mechanisms of these viruses are conserved. During the infection cycle, a proteinaceous capsid, the polymerase complex, is formed. An essential component of this capsid is the viral RNA polymerase that replicates and transcribes the enclosed viral genome. The polymerase complex structure is well characterized for many double-stranded RNA viruses. However, much less is known about the hierarchical molecular interactions that take place in building up such complexes. Using the bacteriophage Φ6 self-assembly system, we obtained novel insights into the processes that mediate polymerase subunit incorporation into the polymerase complex for generation of functional structures. The results presented pave the way for the exploitation and engineering of viral self-assembly processes for biomedical and synthetic biology applications. An understanding of viral assembly processes at the molecular level may also facilitate the development of antivirals that target viral capsid assembly. Double-stranded RNA (dsRNA) viruses package several RNA-dependent RNA polymerases (RdRp) together with their dsRNA genome into an icosahedral protein capsid known as the polymerase complex. This structure is highly conserved among dsRNA viruses but is not found in any other virus group. RdRp subunits typically interact directly with the main capsid proteins, close to the 5-fold symmetric axes, and perform viral genome replication and transcription within the icosahedral protein shell. In this study, we utilized Pseudomonas phage Φ6, a well-established virus self-assembly model, to probe the potential roles of the RdRp in dsRNA virus assembly. We demonstrated that Φ6 RdRp accelerates the polymerase complex self-assembly process and contributes to its conformational stability and integrity. We highlight the role of specific amino acid residues on the surface of the RdRp in its incorporation during the self-assembly reaction. Substitutions of these residues reduce RdRp incorporation into the polymerase complex during the self-assembly reaction. Furthermore, we determined that the overall transcription efficiency of the Φ6 polymerase complex increased when the number of RdRp subunits exceeded the number of genome segments. These results suggest a mechanism for RdRp recruitment in the polymerase complex and highlight its novel role in virion assembly, in addition to the canonical RNA transcription and replication functions.
Collapse
|
11
|
Oliveira LM, Ye Z, Katz A, Alimova A, Wei H, Herman GT, Gottlieb P. Component tree analysis of cystovirus φ6 nucleocapsid Cryo-EM single particle reconstructions. PLoS One 2018; 13:e0188858. [PMID: 29300742 PMCID: PMC5754084 DOI: 10.1371/journal.pone.0188858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023] Open
Abstract
The 3-dimensional structure of the nucleocapsid (NC) of bacteriophage φ6 is described utilizing component tree analysis, a topological and geometric image descriptor. The component trees are derived from density maps of cryo-electron microscopy single particle reconstructions. Analysis determines position and occupancy of structure elements responsible for RNA packaging and transcription. Occupancy of the hexameric nucleotide triphosphorylase (P4) and RNA polymerase (P2) are found to be essentially complete in the NC. The P8 protein lattice likely fixes P4 and P2 in place during maturation. We propose that the viral procapsid (PC) is a dynamic structural intermediate where the P4 and P2 can attach and detach until held in place in mature NCs. During packaging, the PC expands to accommodate the RNA, and P2 translates from its original site near the inner 3-fold axis (20 sites) to the inner 5-fold axis (12 sites) with excess P2 positioned inside the central region of the NC.
Collapse
Affiliation(s)
- Lucas M. Oliveira
- Department of Computer Science, Graduate Center of the City University of New York, New York, NY, United States of America
| | - Ze Ye
- Department of Computer Science, Graduate Center of the City University of New York, New York, NY, United States of America
| | - Al Katz
- Physics Department, City College of New York, New York, NY, United States of America
| | - Alexandra Alimova
- City University of New York School of Medicine, City College of New York, New York, NY, United States of America
| | - Hui Wei
- City University of New York School of Medicine, City College of New York, New York, NY, United States of America
| | - Gabor T. Herman
- Department of Computer Science, Graduate Center of the City University of New York, New York, NY, United States of America
| | - Paul Gottlieb
- City University of New York School of Medicine, City College of New York, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
12
|
Hanhijärvi KJ, Ziedaite G, Bamford DH, Hæggström E, Poranen MM. Single-molecule measurements of viral ssRNA packaging. RNA (NEW YORK, N.Y.) 2017; 23:119-129. [PMID: 27803153 PMCID: PMC5159644 DOI: 10.1261/rna.057471.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Genome packaging of double-stranded RNA (dsRNA) phages has been widely studied using biochemical and molecular biology methods. We adapted the existing in vitro packaging system of one such phage for single-molecule experimentation. To our knowledge, this is the first attempt to study the details of viral RNA packaging using optical tweezers. Pseudomonas phage φ6 is a dsRNA virus with a tripartite genome. Positive-sense (+) single-stranded RNA (ssRNA) genome precursors are packaged into a preformed procapsid (PC), where negative strands are synthesized. We present single-molecule measurements of the viral ssRNA packaging by the φ6 PC. Our data show that packaging proceeds intermittently in slow and fast phases, which likely reflects differences in the unfolding of the RNA secondary structures of the ssRNA being packaged. Although the mean packaging velocity was relatively low (0.07-0.54 nm/sec), packaging could reach 4.62 nm/sec during the fast packaging phase.
Collapse
Affiliation(s)
| | - Gabija Ziedaite
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
| | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Edward Hæggström
- Department of Physics, University of Helsinki, Helsinki 00014, Finland
| | - Minna M Poranen
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
13
|
Characterization of the first double-stranded RNA bacteriophage infecting Pseudomonas aeruginosa. Sci Rep 2016; 6:38795. [PMID: 27934909 PMCID: PMC5146939 DOI: 10.1038/srep38795] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/14/2016] [Indexed: 11/29/2022] Open
Abstract
Bacteriophages (phages) are widely distributed in the biosphere and play a key role in modulating microbial ecology in the soil, ocean, and humans. Although the role of DNA bacteriophages is well described, the biology of RNA bacteriophages is poorly understood. More than 1900 phage genomes are currently deposited in NCBI, but only 6 dsRNA bacteriophages and 12 ssRNA bacteriophages genome sequences are reported. The 6 dsRNA bacteriophages were isolated from legume samples or lakes with Pseudomonas syringae as the host. Here, we report the first Pseudomonas aeruginosa phage phiYY with a three-segmented dsRNA genome. phiYY was isolated from hospital sewage in China with the clinical P. aeruginosa strain, PAO38, as a host. Moreover, the dsRNA phage phiYY has a broad host range, which infects 99 out of 233 clinical P. aeruginosa strains isolated from four provinces in China. This work presented a detailed characterization of the dsRNA bacteriophage infecting P. aeruginosa.
Collapse
|
14
|
Oikonomou CM, Chang YW, Jensen GJ. A new view into prokaryotic cell biology from electron cryotomography. Nat Rev Microbiol 2016; 14:205-20. [PMID: 26923112 PMCID: PMC5551487 DOI: 10.1038/nrmicro.2016.7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electron cryotomography (ECT) enables intact cells to be visualized in 3D in an essentially native state to 'macromolecular' (∼4 nm) resolution, revealing the basic architectures of complete nanomachines and their arrangements in situ. Since its inception, ECT has advanced our understanding of many aspects of prokaryotic cell biology, from morphogenesis to subcellular compartmentalization and from metabolism to complex interspecies interactions. In this Review, we highlight how ECT has provided structural and mechanistic insights into the physiology of bacteria and archaea and discuss prospects for the future.
Collapse
Affiliation(s)
- Catherine M Oikonomou
- Howard Hughes Medical Institute; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Yi-Wei Chang
- Howard Hughes Medical Institute; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Grant J Jensen
- Howard Hughes Medical Institute; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| |
Collapse
|
15
|
Kocabas F, Turan RD, Aslan GS. Fluorometric RdRp assay with self-priming RNA. Virus Genes 2015; 50:498-504. [PMID: 25749997 DOI: 10.1007/s11262-015-1187-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
There is an outmost need for the identification of specific antiviral compounds. Current antivirals lack specificity, making them susceptible to off-target effects, and highlighting importance of development of assays to discover antivirals targeting viral specific proteins. Previous studies for identification of inhibitors of RNA-dependent RNA polymerase (RdRp) mostly relied on radioactive methods. This study describes a fluorometric approach to assess in vitro activity of viral RdRp for drug screening. Using readily available DNA- and RNA-specific fluorophores, we determined an optimum fluorometric approach that could be used in antiviral discovery specifically for RNA viruses by targeting RdRp. Here, we show that double-stranded RNA could be successfully distinguished from single-stranded RNA. In addition, we provide a strategy based on self-priming RNA to assess RdRp activity.
Collapse
Affiliation(s)
- Fatih Kocabas
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755, Istanbul, Turkey,
| | | | | |
Collapse
|
16
|
Sun X, Pirttimaa MJ, Bamford DH, Poranen MM. Rescue of maturation off-pathway products in the assembly of Pseudomonas phage φ 6. J Virol 2013; 87:13279-86. [PMID: 24089550 PMCID: PMC3838280 DOI: 10.1128/jvi.02285-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/23/2013] [Indexed: 12/30/2022] Open
Abstract
Many complex viruses use an assembly pathway in which their genome is packaged into an empty procapsid which subsequently matures into its final expanded form. We utilized Pseudomonas phage 6, a well-established virus assembly model, to probe the plasticity of the procapsid maturation pathway. The 6 packaging nucleoside triphosphatase (NTPase), which powers sequential translocation of the three viral genomic single-stranded RNA molecules to the procapsid during capsid maturation, is part of the mature 6 virion but may spontaneously be dissociated from the procapsid shell. We demonstrate that the dissociation of NTPase subunits results in premature capsid expansion, which is detected as a change in the sedimentation velocity and as defects in RNA packaging and transcription activity. However, this dead-end conformation of the procapsids was rescued by the addition of purified NTPase hexamers, which efficiently associated on the NTPase-deficient particles and subsequently drove their contraction to the compact naive conformation. The resulting particles regained their biological and enzymatic activities, directing them into a productive maturation pathway. These observations imply that the maturation pathways of complex viruses may contain reversible steps that allow the rescue of the off-pathway conformation in an overall unidirectional virion assembly pathway. Furthermore, we provide direct experimental evidence that particles which have different physical properties (distinct sedimentation velocities and conformations) display different stages of the genome packaging program and show that the transcriptional activity of the 6 procapsids correlates with the number of associated NTPase subunits.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Biosciences
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Helsinki, Finland
| | - Markus J. Pirttimaa
- Department of Biosciences
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Helsinki, Finland
| | - Dennis H. Bamford
- Department of Biosciences
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Helsinki, Finland
| | | |
Collapse
|
17
|
El Omari K, Sutton G, Ravantti J, Zhang H, Walter T, Grimes J, Bamford D, Stuart D, Mancini E. Plate tectonics of virus shell assembly and reorganization in phage φ8, a distant relative of mammalian reoviruses. Structure 2013; 21:1384-95. [PMID: 23891291 PMCID: PMC3737474 DOI: 10.1016/j.str.2013.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 01/07/2023]
Abstract
The hallmark of a virus is its capsid, which harbors the viral genome and is formed from protein subunits, which assemble following precise geometric rules. dsRNA viruses use an unusual protein multiplicity (120 copies) to form their closed capsids. We have determined the atomic structure of the capsid protein (P1) from the dsRNA cystovirus Φ8. In the crystal P1 forms pentamers, very similar in shape to facets of empty procapsids, suggesting an unexpected assembly pathway that proceeds via a pentameric intermediate. Unlike the elongated proteins used by dsRNA mammalian reoviruses, P1 has a compact trapezoid-like shape and a distinct arrangement in the shell, with two near-identical conformers in nonequivalent structural environments. Nevertheless, structural similarity with the analogous protein from the mammalian viruses suggests a common ancestor. The unusual shape of the molecule may facilitate dramatic capsid expansion during phage maturation, allowing P1 to switch interaction interfaces to provide capsid plasticity.
Collapse
Affiliation(s)
- Kamel El Omari
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Geoff Sutton
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Janne J. Ravantti
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56, 00014 Helsinki, Finland
| | - Hanwen Zhang
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Thomas S. Walter
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Jonathan M. Grimes
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Dennis H. Bamford
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56, 00014 Helsinki, Finland
| | - David I. Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Erika J. Mancini
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- Corresponding author
| |
Collapse
|
18
|
Nemecek D, Boura E, Wu W, Cheng N, Plevka P, Qiao J, Mindich L, Heymann JB, Hurley JH, Steven AC. Subunit folds and maturation pathway of a dsRNA virus capsid. Structure 2013; 21:1374-83. [PMID: 23891288 PMCID: PMC3742642 DOI: 10.1016/j.str.2013.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/08/2013] [Accepted: 06/14/2013] [Indexed: 12/24/2022]
Abstract
The cystovirus ϕ6 shares several distinct features with other double-stranded RNA (dsRNA) viruses, including the human pathogen, rotavirus: segmented genomes, nonequivalent packing of 120 subunits in its icosahedral capsid, and capsids as compartments for transcription and replication. ϕ6 assembles as a dodecahedral procapsid that undergoes major conformational changes as it matures into the spherical capsid. We determined the crystal structure of the capsid protein, P1, revealing a flattened trapezoid subunit with an α-helical fold. We also solved the procapsid with cryo-electron microscopy to comparable resolution. Fitting the crystal structure into the procapsid disclosed substantial conformational differences between the two P1 conformers. Maturation via two intermediate states involves remodeling on a similar scale, besides huge rigid-body rotations. The capsid structure and its stepwise maturation that is coupled to sequential packaging of three RNA segments sets the cystoviruses apart from other dsRNA viruses as a dynamic molecular machine.
Collapse
Affiliation(s)
- Daniel Nemecek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Evzen Boura
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2. 16600 Prague 6, Czech Republic
| | - Weimin Wu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Naiqian Cheng
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907
| | - Jian Qiao
- Department of Microbiology, Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07103
| | - Leonard Mindich
- Department of Microbiology, Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07103
| | - J. Bernard Heymann
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - James H. Hurley
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Alasdair C. Steven
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| |
Collapse
|
19
|
Guerrero-Ferreira RC, Wright ER. Cryo-electron tomography of bacterial viruses. Virology 2013; 435:179-86. [PMID: 23217626 DOI: 10.1016/j.virol.2012.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/08/2012] [Accepted: 08/19/2012] [Indexed: 01/15/2023]
Abstract
Bacteriophage particles contain both simple and complex macromolecular assemblages and machines that enable them to regulate the infection process under diverse environmental conditions with a broad range of bacterial hosts. Recent developments in cryo-electron tomography (cryo-ET) make it possible to observe the interactions of bacteriophages with their host cells under native-state conditions at unprecedented resolution and in three-dimensions. This review describes the application of cryo-ET to studies of bacteriophage attachment, genome ejection, assembly and egress. Current topics of investigation and future directions in the field are also discussed.
Collapse
Affiliation(s)
- Ricardo C Guerrero-Ferreira
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | | |
Collapse
|
20
|
Protein P7 of the cystovirus φ6 is located at the three-fold axis of the unexpanded procapsid. PLoS One 2012; 7:e47489. [PMID: 23077625 PMCID: PMC3471842 DOI: 10.1371/journal.pone.0047489] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
The objective of this study was to determine the location of protein P7, the RNA packaging factor, in the procapsid of the φ6 cystovirus. A comparison of cryo-electron microscopy high-resolution single particle reconstructions of the φ6 complete unexpanded procapsid, the protein P2-minus procapsid (P2 is the RNA directed RNA-polymerase), and the P7-minus procapsid, show that prior to RNA packaging the P7 protein is located near the three-fold axis of symmetry. Difference maps highlight the precise position of P7 and demonstrate that in P7-minus particles the P2 proteins are less localized with reduced densities at the three-fold axes. We propose that P7 performs the mechanical function of stabilizing P2 on the inner protein P1 shell which ensures that entering viral single-stranded RNA is replicated.
Collapse
|
21
|
Probing, by self-assembly, the number of potential binding sites for minor protein subunits in the procapsid of double-stranded RNA bacteriophage Φ6. J Virol 2012; 86:12208-16. [PMID: 22933292 DOI: 10.1128/jvi.01505-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The double-stranded RNA bacteriophage Φ6 is an extensively studied prokaryotic model system for virus assembly. There are established in vitro assembly protocols available for the Φ6 system for obtaining infectious particles from purified protein and RNA constituents. The polymerase complex is a multifunctional nanomachine that replicates, transcribes, and translocates viral RNA molecules in a highly specific manner. The complex is composed of (i) the major structural protein (P1), forming a T=1 icosahedral lattice with two protein subunits in the icosahedral asymmetric unit; (ii) the RNA-dependent RNA polymerase (P2); (iii) the hexameric packaging nucleoside triphosphatase (NTPase) (P4); and (iv) the assembly cofactor (P7). In this study, we analyzed several Φ6 virions and recombinant polymerase complexes to investigate the relative copy numbers of P2, P4, and P7, and we applied saturated concentrations of these proteins in the self-assembly system to probe their maximal numbers of binding sites in the P1 shell. Biochemical quantitation confirmed that the composition of the recombinant particles was similar to that of the virion cores. By including a high concentration of P2 or P7 in the self-assembly reaction mix, we observed that the numbers of these proteins in the resulting particles could be increased beyond those observed in the virion. Our results also suggest a previously unidentified P2-P7 dependency in the assembly reaction. Furthermore, it appeared that P4 must initially be incorporated at each, or a majority, of the 5-fold symmetry positions of the P1 shell for particle assembly. Although required for nucleation, excess P4 resulted in slower assembly kinetics.
Collapse
|
22
|
Abstract
Viruses hijack host-cell functions and optimize them for viral replication causing a severe threat to human health. However, viruses are also tools to understand cell biology and they may be effective reagents in nanomedicine. Studies from the molecular to cellular levels are aimed at understanding the details of viral life cycles and the underlying virus–host interactions. Recent developments in electron microscopy tomography allow viral and cellular events to be observed in fine structural detail in three-dimensions. By combining high-resolution structures of individual proteins and macrocomplexes obtained by crystallography and electron cryomicroscopy and image reconstruction with reconstructions performed on subtomographic volumes, electron tomography has advanced the structural and mechanistic understanding of virus infections both in vitro and in host cells.
Collapse
|
23
|
Packaging accessory protein P7 and polymerase P2 have mutually occluding binding sites inside the bacteriophage 6 procapsid. J Virol 2012; 86:11616-24. [PMID: 22896624 DOI: 10.1128/jvi.01347-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteriophage 6 is a double-stranded RNA (dsRNA) virus whose genome is packaged sequentially as three single-stranded RNA (ssRNA) segments into an icosahedral procapsid which serves as a compartment for genome replication and transcription. The procapsid shell consists of 60 copies each of P1(A) and P1(B), two nonequivalent conformers of the P1 protein. Hexamers of the packaging ATPase P4 are mounted over the 5-fold vertices, and monomers of the RNA-dependent RNA polymerase (P2) attach to the inner surface, near the 3-fold axes. A fourth protein, P7, is needed for packaging and also promotes assembly. We used cryo-electron microscopy to localize P7 by difference mapping of procapsids with different protein compositions. We found that P7 resides on the interior surface of the P1 shell and appears to be monomeric. Its binding sites are arranged around the 3-fold axes, straddling the interface between two P1(A) subunits. Thus, P7 may promote assembly by stabilizing an initiation complex. Only about 20% of the 60 P7 binding sites were occupied in our preparations. P7 density overlaps P2 density similarly mapped, implying mutual occlusion. The known structure of the 12 homolog fits snugly into the P7 density. Both termini-which have been implicated in RNA binding-are oriented toward the adjacent 5-fold vertex, the entry pathway of ssRNA segments. Thus, P7 may promote packaging either by interacting directly with incoming RNA or by modulating the structure of the translocation pore.
Collapse
|
24
|
Abstract
P4 proteins are hexameric RNA packaging ATPases of dsRNA bacteriophages of the Cystoviridae family. P4 hexamers are integral part of the inner polymerase core and play several essential roles in the virus replication cycle. P4 proteins are structurally related to the hexameric helicases and translocases of superfamily 4 (SF4) and other RecA-like ATPases. Recombinant P4 proteins retain their 5' to 3' helicase and translocase activity in vitro and thus serve as a model system for studying the mechanism of action of hexameric ring helicases and RNA translocation. This review summarizes the different roles that P4 proteins play during virus assembly, genome packaging, and transcription. Structural and mechanistic details of P4 action are laid out to and subsequently compared with those of the related hexameric helicases and other packaging motors.
Collapse
Affiliation(s)
- Erika J Mancini
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, OX3 7BN, UK.
| | | |
Collapse
|
25
|
Nemecek D, Cheng N, Qiao J, Mindich L, Steven AC, Heymann JB. Stepwise expansion of the bacteriophage ϕ6 procapsid: possible packaging intermediates. J Mol Biol 2011; 414:260-71. [PMID: 22019738 DOI: 10.1016/j.jmb.2011.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/30/2011] [Accepted: 10/05/2011] [Indexed: 12/31/2022]
Abstract
The initial assembly product of bacteriophage ϕ6, the procapsid, undergoes major structural transformation during the sequential packaging of its three segments of single-stranded RNA. The procapsid, a compact icosahedrally symmetric particle with deeply recessed vertices, expands to the spherical mature capsid, increasing the volume available to accommodate the genome by 2.5-fold. It has been proposed that expansion and packaging are linked, with each stage in expansion presenting a binding site for a particular RNA segment. To investigate procapsid transformability, we induced expansion by acidification, heating, and elevated salt concentration. Cryo-electron microscopy reconstructions after all three treatments yielded the same partially expanded particle. Analysis by cryo-electron tomography showed that all vertices of a given capsid were either in a compact or an expanded state, indicating a highly cooperative transition. To benchmark the mature capsid, we analyzed filled (in vivo packaged) capsids. When these particles were induced to release their RNA, they reverted to the same intermediate state as expanded procapsids (intermediate 1) or to a second, further expanded state (intermediate 2). This partial reversibility of expansion suggests that the mature spherical capsid conformation is obtained only when sufficient outward pressure is exerted by packaged RNA. The observation of two intermediates is consistent with the proposed three-step packaging process. The model is further supported by the observation that a mutant capable of packaging the second RNA segment without previously packaging the first segment has enhanced susceptibility for switching spontaneously from the procapsid to the first intermediate state.
Collapse
Affiliation(s)
- Daniel Nemecek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.
Collapse
|
27
|
Schmid MF. Single-particle electron cryotomography (cryoET). ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 82:37-65. [PMID: 21501818 DOI: 10.1016/b978-0-12-386507-6.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electron cryotomography (cryoET) is capable of yielding 3D reconstructions of cells and large-macromolecular machines. It does not depend on fixing, staining, or embedding, so the contrast is related to the mass density of the specimen. The 3D reconstruction itself does not require that the specimen consist of identical, conformationally homogeneous units in random orientations, as is the ideal case for single-particle reconstruction from 2D images. However, if the specimen contains multiple copies of a macromolecular assembly, these copies can be extracted as 3D subvolumes from the tomographic reconstruction, aligned to each other, and averaged to achieve higher signal-to-noise (S/N) ratios and higher resolution. If conformational variability is present, it is more straightforward to separate the conformational heterogeneity from the orientation of the particles using the 3D information from the subvolumes than it is for single-particle reconstructions. This chapter covers the techniques of detecting, classifying, aligning, and averaging subvolumes (subtomograms) extracted from cryoET reconstructions. It considers methods for dealing with the unique problems encountered in tomographic analysis, such as the absence of data in the "missing wedge," and the overall extremely low S/N ratio inherent in cryoET. It also reviews applications of the inverse problem, that of orienting a template back into a tomogram, to determine the position of a molecule in the context of a whole cell.
Collapse
Affiliation(s)
- Michael F Schmid
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|