1
|
Li Y, Yang C, Wang S, Yang D, Zhang Y, Xu L, Ma L, Zheng J, Petersen RB, Zheng L, Chen H, Huang K. Copper and iron ions accelerate the prion-like propagation of α-synuclein: A vicious cycle in Parkinson's disease. Int J Biol Macromol 2020; 163:562-573. [PMID: 32629061 DOI: 10.1016/j.ijbiomac.2020.06.274] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Protein fibrils drive the onset and progression of many diseases in a prion-like manner, i.e. they transcellular propagate through the extracellular space to health cells to initiate toxic aggregation as seeds. The conversion of native α-synuclein into filamentous aggregates in Lewy bodies is a hallmark of Parkinson's disease (PD). Copper and iron ions accumulate in PD brains, however, whether they influence the prion-like propagation of α-synuclein remain unclear. Here, we reported that copper/iron ions accelerate prion-like propagation of α-synuclein fibrils by promoting cellular internalization of α-synuclein fibrils, intracellular α-synuclein aggregation and the subsequent release of mature fibrils to the extracellular space to induce further propagation. Mechanistically, copper/iron ions enhanced α-synuclein fibrils internalization was mediated by negatively charged membrane heparan sulfate proteoglycans (HSPGs). α-Synuclein fibrils formed in the presence of copper/iron ions were more cytotoxic, causing increased ROS production, cell apoptosis, and shortened the lifespan of a C. elegans PD model overexpressing human α-synuclein. Notably, these deleterious effects were ameliorated by two clinically used chelators, triethylenetetramine and deferiprone. Together, our results suggest a new role for heavy metal ions, e.g. copper and iron, in the pathogenesis of PD through accelerating prion-like propagation of α-synuclein fibrils.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Chen Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Shilin Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Dong Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Li Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430012, China
| | - Jiaojiao Zheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant 48858, MI, USA
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Kun Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China.
| |
Collapse
|
2
|
Zhou XM, Entwistle A, Zhang H, Jackson AP, Mason TO, Shimanovich U, Knowles TPJ, Smith AT, Sawyer EB, Perrett S. Self-Assembly of Amyloid Fibrils That Display Active Enzymes. ChemCatChem 2014; 6:1961-1968. [PMID: 25937845 PMCID: PMC4413355 DOI: 10.1002/cctc.201402125] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Indexed: 12/04/2022]
Abstract
Enzyme immobilization is an important strategy to enhance the stability and recoverability of enzymes and to facilitate the separation of enzymes from reaction products. However, enzyme purification followed by separate chemical steps to allow immobilization on a solid support reduces the efficiency and yield of the active enzyme. Here we describe polypeptide constructs that self-assemble spontaneously into nanofibrils with fused active enzyme subunits displayed on the amyloid fibril surface. We measured the steady-state kinetic parameters for the appended enzymes in situ within fibrils and compare these with the identical protein constructs in solution. Finally, we demonstrated that the fibrils can be recycled and reused in functional assays both in conventional batch processes and in a continuous-flow microreactor.
Collapse
Affiliation(s)
- Xiao-Ming Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Chaoyang District, Beijing 100101 (China)
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
- University of the Chinese Academy of Sciences19 A Yuquanlu, Shijingshan District, Beijing 100049 (China)
| | - Aiman Entwistle
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Chaoyang District, Beijing 100101 (China)
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Chaoyang District, Beijing 100101 (China)
| | - Antony P Jackson
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Chaoyang District, Beijing 100101 (China)
- Department of Biochemistry, University of CambridgeTennis Court Road, Cambridge CB2 1QW (UK)
| | - Thomas O Mason
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
| | - Ulyana Shimanovich
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
| | - Tuomas P J Knowles
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
| | - Andrew T Smith
- School of Applied Sciences, RMIT UniversityLa Trobe Street, Melbourne, Victoria 3000 (Australia)
| | - Elizabeth B Sawyer
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Chaoyang District, Beijing 100101 (China)
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Chaoyang District, Beijing 100101 (China)
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
| |
Collapse
|
3
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
4
|
The yeast prion protein Ure2: insights into the mechanism of amyloid formation. Biochem Soc Trans 2012; 39:1359-64. [PMID: 21936815 DOI: 10.1042/bst0391359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ure2, a regulator of nitrogen metabolism, is the protein determinant of the [URE3] prion state in Saccharomyces cerevisiae. Upon conversion into the prion form, Ure2 undergoes a heritable conformational change to an amyloid-like aggregated state and loses its regulatory function. A number of molecular chaperones have been found to affect the prion properties of Ure2. The studies carried out in our laboratory have been aimed at elucidating the structure of Ure2 fibrils, the mechanism of amyloid formation and the effect of chaperones on the fibril formation of Ure2.
Collapse
|
5
|
Abstract
In this chapter we provided the overall background to the subject of protein aggregation and fibrillogenesis in amyloidogenesis, with introduction and brief discussion of the various topics that are included with the coming chapters. The division of the book into basic science and clinical science sections enables correlation of the topics to be made. The many proteins and peptides that have currently been found to undergo fibrillogenesis are tabulated. A broad technical survey is made, to indicate the vast array of techniques currently available to study aspects of protein oligomerization, aggregation and fibrillogenesis. These are split into three groups and tabulated, as the microscopical techniques, the analytical and biophysical methods, and the biochemical and cellular techniques. A few techniques are discussed, but in most cases only a link to relevant recent literature is provided.
Collapse
|
6
|
Kabani M, Melki R. Yeast prions assembly and propagation: contributions of the prion and non-prion moieties and the nature of assemblies. Prion 2011; 5:277-84. [PMID: 22052349 DOI: 10.4161/pri.18070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Yeast prions are self-perpetuating protein aggregates that are at the origin of heritable and transmissible non-Mendelian phenotypic traits. Among these, [PSI+], [URE3] and [PIN+] are the most well documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Fibril assembly depends on the presence of N- or C-terminal prion domains (PrDs) which are not homologous in sequence but share unusual amino-acid compositions, such as enrichment in polar residues (glutamines and asparagines) or the presence of oligopeptide repeats. Purified PrDs form amyloid fibrils that can convert prion-free cells to the prion state upon transformation. Nonetheless, isolated PrDs and full-length prion proteins have different aggregation, structural and infectious properties. In addition, mutations in the "non-prion" domains (non-PrDs) of Sup35p, Ure2p and Rnq1p were shown to affect their prion properties in vitro and in vivo. Despite these evidences, the implication of the functional non-PrDs in fibril assembly and prion propagation has been mostly overlooked. In this review, we discuss the contribution of non-PrDs to prion assemblies, and the structure-function relationship in prion infectivity in the light of recent findings on Sup35p and Ure2p assembly into infectious fibrils from our laboratory and others.
Collapse
Affiliation(s)
- Mehdi Kabani
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
| | | |
Collapse
|