1
|
Nicoll C, Mascotti M. Investigating the biochemical signatures and physiological roles of the FMO family using molecular phylogeny. BBA ADVANCES 2023; 4:100108. [PMID: 38034983 PMCID: PMC10682829 DOI: 10.1016/j.bbadva.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Group B flavin-dependent monooxygenases are employed in swathes of different physiological functions. Despite their collectively large substrate profile, they all harness a flavin-based C4a-(hydro)peroxy intermediate for function. Within this class are the flavin-containing monooxygenases (FMOs), representing an integral component within the secondary metabolism of all living things - xenobiotic detoxification. Their broad substrate profile makes them ideal candidates for detoxifying procedures as they can tackle a range of compounds. Recent studies have illustrated that several FMOs, however, have unique substrate profiles and differing physiological functions that implicate new roles within secondary and primary metabolism. Herein this article, by employing phylogenetic approaches, and inspecting structures of AlphaFold generated models, we have constructed a biochemical blueprint of the FMO family. FMOs are clustered in four distinct groups, with two being predominantly dedicated to xenobiotic detoxification. Furthermore, we observe that differing enzymatic activities are not constricted to a 'golden' set of residues but instead an intricate constellation of primary and secondary sphere residues. We believe that this work delineates the core phylogeny of the Group B monooxygenases and will prove useful for classifying newly sequenced genes and provide directions to future biochemical investigations.
Collapse
Affiliation(s)
- C.R. Nicoll
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - M.L. Mascotti
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
- IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, D5700HHW, San Luis, Argentina
| |
Collapse
|
2
|
Gäfe S, Niemann HH. Structural basis of regioselective tryptophan dibromination by the single-component flavin-dependent halogenase AetF. Acta Crystallogr D Struct Biol 2023; 79:596-609. [PMID: 37314407 PMCID: PMC10306068 DOI: 10.1107/s2059798323004254] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
The flavin-dependent halogenase (FDH) AetF successively brominates tryptophan at C5 and C7 to generate 5,7-dibromotryptophan. In contrast to the well studied two-component tryptophan halogenases, AetF is a single-component flavoprotein monooxygenase. Here, crystal structures of AetF alone and in complex with various substrates are presented, representing the first experimental structures of a single-component FDH. Rotational pseudosymmetry and pseudomerohedral twinning complicated the phasing of one structure. AetF is structurally related to flavin-dependent monooxygenases. It contains two dinucleotide-binding domains for binding the ADP moiety with unusual sequences that deviate from the consensus sequences GXGXXG and GXGXXA. A large domain tightly binds the cofactor flavin adenine dinucleotide (FAD), while the small domain responsible for binding the nicotinamide adenine dinucleotide (NADP) is unoccupied. About half of the protein forms additional structural elements containing the tryptophan binding site. FAD and tryptophan are about 16 Å apart. A tunnel between them presumably allows diffusion of the active halogenating agent hypohalous acid from FAD to the substrate. Tryptophan and 5-bromotryptophan bind to the same site but with a different binding pose. A flip of the indole moiety identically positions C5 of tryptophan and C7 of 5-bromotryptophan next to the tunnel and to catalytic residues, providing a simple explanation for the regioselectivity of the two successive halogenations. AetF can also bind 7-bromotryptophan in the same orientation as tryptophan. This opens the way for the biocatalytic production of differentially dihalogenated tryptophan derivatives. The structural conservation of a catalytic lysine suggests a way to identify novel single-component FDHs.
Collapse
Affiliation(s)
- Simon Gäfe
- Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Hartmut H. Niemann
- Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
3
|
Catucci G, Turella S, Cheropkina H, De Angelis M, Gilardi G, Sadeghi SJ. Green production of indigo and indirubin by an engineered Baeyer–Villiger monooxygenase. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Sun BY, Sui HL, Liu ZW, Tao XY, Gao B, Zhao M, Ma YS, Zhao J, Liu M, Wang FQ, Wei DZ. Structure-guided engineering of a flavin-containing monooxygenase for the efficient production of indirubin. BIORESOUR BIOPROCESS 2022; 9:70. [PMID: 38647553 PMCID: PMC10991670 DOI: 10.1186/s40643-022-00559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Indirubin is a bisindole compound for the treatment of chronic myelocytic leukemia. Here, we presented a structure-guided method to improve the activity of a flavin-containing monooxygenase (bFMO) for the efficient production of indirubin in Escherichia coli. A flexible loop interlocked with the active pocket through a helix and the substrate tunnel rather than the active pocket in bFMO were identified to be two reconfigurable structures to improve its activity, resulting in K223R and N291T mutants with enhanced catalytic activity by 2.5- and 2.0-fold, respectively. A combined modification at the two regions (K223R/D317S) achieved a 6.6-fold improvement in catalytic efficiency (kcat/Km) due to enhancing π-π stacking interactions stabilization. Finally, an engineered E. coli strain was constructed by metabolic engineering, which could produce 860.7 mg/L (18 mg/L/h) indirubin, the highest yield ever reported. This work provides new insight into the redesign of FMOs to boost their activities and an efficient approach to produce indirubin.
Collapse
Affiliation(s)
- Bing-Yao Sun
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua-Lu Sui
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Zi-Wei Liu
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin-Yi Tao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bei Gao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu-Shu Ma
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Liu
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Feng-Qing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dong-Zhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
5
|
Wang XJ, Zhang N, Teng ZJ, Wang P, Zhang WP, Chen XL, Zhang YZ, Chen Y, Fu HH, Li CY. Structural and Mechanistic Insights Into Dimethylsulfoxide Formation Through Dimethylsulfide Oxidation. Front Microbiol 2021; 12:735793. [PMID: 34630359 PMCID: PMC8498191 DOI: 10.3389/fmicb.2021.735793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Dimethylsulfide (DMS) and dimethylsulfoxide (DMSO) are widespread in marine environment, and are important participants in the global sulfur cycle. Microbiol oxidation of DMS to DMSO represents a major sink of DMS in marine surface waters. The SAR11 clade and the marine Roseobacter clade (MRC) are the most abundant heterotrophic bacteria in the ocean surface seawater. It has been reported that trimethylamine monooxygenase (Tmm, EC 1.14.13.148) from both MRC and SAR11 bacteria likely oxidizes DMS to generate DMSO. However, the structural basis of DMS oxidation has not been explained. Here, we characterized a Tmm homolog from the SAR11 bacterium Pelagibacter sp. HTCC7211 (Tmm7211). Tmm7211 exhibits DMS oxidation activity in vitro. We further solved the crystal structures of Tmm7211 and Tmm7211 soaked with DMS, and proposed the catalytic mechanism of Tmm7211, which comprises a reductive half-reaction and an oxidative half-reaction. FAD and NADPH molecules are essential for the catalysis of Tmm7211. In the reductive half-reaction, FAD is reduced by NADPH. In the oxidative half-reaction, the reduced FAD reacts with O2 to form the C4a-(hydro)peroxyflavin. The binding of DMS may repel the nicotinamide ring of NADP+, and make NADP+ generate a conformational change, shutting off the substrate entrance and exposing the active C4a-(hydro)peroxyflavin to DMS to complete the oxidation of DMS. The proposed catalytic mechanism of Tmm7211 may be widely adopted by MRC and SAR11 bacteria. This study provides important insight into the conversion of DMS into DMSO in marine bacteria, leading to a better understanding of the global sulfur cycle.
Collapse
Affiliation(s)
- Xiu-Juan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Nan Zhang
- School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Zhao-Jie Teng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Peng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei-Peng Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yin Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Hui-Hui Fu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chun-Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Altenburg WJ, Yewdall NA, Vervoort DFM, van Stevendaal MHME, Mason AF, van Hest JCM. Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells. Nat Commun 2020; 11:6282. [PMID: 33293610 PMCID: PMC7722712 DOI: 10.1038/s41467-020-20124-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
The cell cytosol is crowded with high concentrations of many different biomacromolecules, which is difficult to mimic in bottom-up synthetic cell research and limits the functionality of existing protocellular platforms. There is thus a clear need for a general, biocompatible, and accessible tool to more accurately emulate this environment. Herein, we describe the development of a discrete, membrane-bound coacervate-based protocellular platform that utilizes the well-known binding motif between Ni2+-nitrilotriacetic acid and His-tagged proteins to exercise a high level of control over the loading of biologically relevant macromolecules. This platform can accrete proteins in a controlled, efficient, and benign manner, culminating in the enhancement of an encapsulated two-enzyme cascade and protease-mediated cargo secretion, highlighting the potency of this methodology. This versatile approach for programmed spatial organization of biologically relevant proteins expands the protocellular toolbox, and paves the way for the development of the next generation of complex yet well-regulated synthetic cells.
Collapse
Affiliation(s)
- Wiggert J Altenburg
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - N Amy Yewdall
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Daan F M Vervoort
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Marleen H M E van Stevendaal
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Alexander F Mason
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
7
|
Use of Flavin-Containing Monooxygenases for Conversion of Trimethylamine in Salmon Protein Hydrolysates. Appl Environ Microbiol 2020; 86:AEM.02105-20. [PMID: 32978141 PMCID: PMC7688232 DOI: 10.1128/aem.02105-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/23/2020] [Indexed: 11/20/2022] Open
Abstract
Enzyme-based conversion of marine biomass to high-quality peptide ingredients leaves a distinct smell of “fish” caused by the presence of trimethylamine, which limits their economic potential. We suggest an enzymatic solution for converting trimethylamine to the odorless trimethylamine N-oxide as a novel strategy to improve the smell quality of marine protein hydrolysates. Following a systematic investigation of 45 putative bacterial trimethylamine monooxygenases from several phyla, we expand the repertoire of known active trimethylamine monooxygenases. As a proof-of-concept, we demonstrate that three of these enzymes oxidized trimethylamine in an industry-relevant salmon protein hydrolysate. Our results add new oxidoreductases to the industrial biocatalytic toolbox and provide a new point of departure for enzyme process developments in marine biorefineries. Enzymatic processing of fish by-products for recovery of peptides (hydrolysates) is a promising technology to reach food grade ingredients of high nutritional quality. Despite this, their bitter taste and “fish” odor block implementation in food products and limit their economic potential. Trimethylamine (TMA) is a known contributor to malodor in fish. Current strategies to mask or remove the odor either are not effective or give rise to undesirable side effects. As an alternative approach to remediate TMA, we propose a novel enzymatic strategy to convert TMA into the odorless trimethylamine N-oxide (TMAO) using TMA monooxygenases (Tmms). We identified a diverse set of bacterial Tmms using a sequence similarity network. Purified, recombinant enzymes were assessed for their biocatalytic capacity by monitoring NADPH consumption and TMAO generation. Selected Tmms were subjected to biochemical characterization and investigated for their ability to oxidize TMA in an industry-relevant substrate. From the 45 bacterial Tmm candidates investigated, eight enzymes from four different taxa were selected for their high activity toward TMA. The three most active enzymes were shown to vary in temperature optimum, with the highest being 45°C. Enzymatic activity dropped at high temperatures, likely due to structural unfolding. The enzymes were all active from pH 6.0 to 8.5, with functional stability being lowest around the optimal pH. All three Tmms, given sufficient NADPH cofactor, were found to generate TMAO in the TMA-rich salmon protein hydrolysate. The Tmms serve as unique starting points for engineering and should be useful for guiding process development for marine biorefineries. IMPORTANCE Enzyme-based conversion of marine biomass to high-quality peptide ingredients leaves a distinct smell of “fish” caused by the presence of trimethylamine, which limits their economic potential. We suggest an enzymatic solution for converting trimethylamine to the odorless trimethylamine N-oxide as a novel strategy to improve the smell quality of marine protein hydrolysates. Following a systematic investigation of 45 putative bacterial trimethylamine monooxygenases from several phyla, we expand the repertoire of known active trimethylamine monooxygenases. As a proof-of-concept, we demonstrate that three of these enzymes oxidized trimethylamine in an industry-relevant salmon protein hydrolysate. Our results add new oxidoreductases to the industrial biocatalytic toolbox and provide a new point of departure for enzyme process developments in marine biorefineries.
Collapse
|
8
|
Valentino H, Campbell AC, Schuermann JP, Sultana N, Nam HG, LeBlanc S, Tanner JJ, Sobrado P. Structure and function of a flavin-dependent S-monooxygenase from garlic ( Allium sativum). J Biol Chem 2020; 295:11042-11055. [PMID: 32527723 DOI: 10.1074/jbc.ra120.014484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/07/2020] [Indexed: 12/26/2022] Open
Abstract
Allicin is a component of the characteristic smell and flavor of garlic (Allium sativum). A flavin-containing monooxygenase (FMO) produced by A. sativum (AsFMO) was previously proposed to oxidize S-allyl-l-cysteine (SAC) to alliin, an allicin precursor. Here, we present a kinetic and structural characterization of AsFMO that suggests a possible contradiction to this proposal. Results of steady-state kinetic analyses revealed that AsFMO exhibited negligible activity with SAC; however, the enzyme was highly active with l-cysteine, N-acetyl-l-cysteine, and allyl mercaptan. We found that allyl mercaptan with NADPH was the preferred substrate-cofactor combination. Rapid-reaction kinetic analyses showed that NADPH binds tightly (KD of ∼2 μm) to AsFMO and that the hydride transfer occurs with pro-R stereospecificity. We detected the formation of a long-wavelength band when AsFMO was reduced by NADPH, probably representing the formation of a charge-transfer complex. In the absence of substrate, the reduced enzyme, in complex with NADP+, reacted with oxygen and formed an intermediate with a spectrum characteristic of C4a-hydroperoxyflavin, which decays several orders of magnitude more slowly than the k cat The presence of substrate enhanced C4a-hydroperoxyflavin formation and, upon hydroxylation, oxidation occurred with a rate constant similar to the k cat The structure of AsFMO complexed with FAD at 2.08-Å resolution features two domains for binding of FAD and NADPH, representative of class B flavin monooxygenases. These biochemical and structural results are consistent with AsFMO being an S-monooxygenase involved in allicin biosynthesis through direct formation of sulfenic acid and not SAC oxidation.
Collapse
Affiliation(s)
- Hannah Valentino
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
| | - Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Jonathan P Schuermann
- Northeastern Collaborative Access Team, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Nazneen Sultana
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Han G Nam
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Sophie LeBlanc
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA .,Department of Chemistry, University of Missouri, Columbia, Missouri, USA
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA .,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
9
|
Lončar N, van Beek HL, Fraaije MW. Structure-Based Redesign of a Self-Sufficient Flavin-Containing Monooxygenase towards Indigo Production. Int J Mol Sci 2019; 20:ijms20246148. [PMID: 31817552 PMCID: PMC6940849 DOI: 10.3390/ijms20246148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Indigo is currently produced by a century-old petrochemical-based process, therefore it is highly attractive to develop a more environmentally benign and efficient biotechnological process to produce this timeless dye. Flavin-containing monooxygenases (FMOs) are able to oxidize a wide variety of substrates. In this paper we show that the bacterial mFMO can be adapted to improve its ability to convert indole into indigo. The improvement was achieved by a combination of computational and structure-inspired enzyme redesign. We showed that the thermostability and the kcat for indole could be improved 1.5-fold by screening a relatively small number of enzyme mutants. This project not only resulted in an improved biocatalyst but also provided an improved understanding of the structural elements that determine the activity of mFMO and provides hints for further improvement of the monooxygenase as biocatalyst.
Collapse
Affiliation(s)
| | - Hugo L. van Beek
- Molecular Enzymology group, University of Groningen, 9747 AG Groningen, The Netherlands;
| | - Marco W. Fraaije
- Molecular Enzymology group, University of Groningen, 9747 AG Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-50-3634345
| |
Collapse
|
10
|
Characterization of a thermostable flavin-containing monooxygenase from Nitrincola lacisaponensis (NiFMO). Appl Microbiol Biotechnol 2019; 103:1755-1764. [DOI: 10.1007/s00253-018-09579-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
11
|
Binding of methimazole and NADP(H) to human FMO3: In vitro and in silico studies. Int J Biol Macromol 2018; 118:460-468. [PMID: 29959003 DOI: 10.1016/j.ijbiomac.2018.06.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/06/2018] [Accepted: 06/22/2018] [Indexed: 01/10/2023]
Abstract
Human flavin-containing monooxygenase isoform 3 (hFMO3) is an important hepatic drug-metabolizing enzyme, catalyzing the monooxygenation of nucleophilic heteroatom-containing xenobiotics. Based on the structure of bacterial FMO, it is proposed that a conserved asparagine is involved in both NADP(H) and substrate binding. In order to explore the role of this amino acid in hFMO3, two mutants were constructed. In the case of N61Q, increasing the steric hindrance above the flavin N5-C4a causes poor NADP(H) binding, destabilizing the catalytic FAD intermediate, whereas the introduction of a negatively charged residue, N61D, interferes mainly with catalytic intermediate formation and its stability. To better understand the substrate-enzyme interaction, in vitro as well as in silico experiments were carried out with methimazole as substrate. Methimazole is a high-affinity substrate of hFMO3 and can competitively suppress the metabolism of other compounds. Our results demonstrate that methimazole Pi-stacks above the isoalloxazine ring of FAD in hFMO3, in a similar way to indole binding to the bacterial FMO. However, for hFMO3 indole is found to act as a non-substrate competitive inhibitor. Finally, understanding the binding mode of methimazole and indole could be advantageous for development of hFMO3 inhibitors, currently investigated as a possible treatment strategy for atherosclerosis.
Collapse
|
12
|
Kubitza C, Faust A, Gutt M, Gäth L, Ober D, Scheidig AJ. Crystal structure of pyrrolizidine alkaloid N-oxygenase from the grasshopper Zonocerus variegatus. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:422-432. [PMID: 29717713 DOI: 10.1107/s2059798318003510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/28/2018] [Indexed: 11/10/2022]
Abstract
The high-resolution crystal structure of the flavin-dependent monooxygenase (FMO) from the African locust Zonocerus variegatus is presented and the kinetics of structure-based protein variants are discussed. Z. variegatus expresses three flavin-dependent monooxygenase (ZvFMO) isoforms which contribute to a counterstrategy against pyrrolizidine alkaloids (PAs). PAs are protoxic compounds produced by some angiosperm lineages as a chemical defence against herbivores. N-Oxygenation of PAs and the accumulation of PA N-oxides within their haemolymph result in two evolutionary advantages for these insects: (i) they circumvent the defence mechanism of their food plants and (ii) they can use PA N-oxides to protect themselves against predators, which cannot cope with the toxic PAs. Despite a high degree of sequence identity and a similar substrate spectrum, the three ZvFMO isoforms differ greatly in enzyme activity. Here, the crystal structure of the Z. variegatus PA N-oxygenase (ZvPNO), the most active ZvFMO isoform, is reported at 1.6 Å resolution together with kinetic studies of a second isoform, ZvFMOa. This is the first available crystal structure of an FMO from class B (of six different FMO subclasses, A-F) within the family of flavin-dependent monooxygenases that originates from a more highly developed organism than yeast. Despite the differences in sequence between family members, their overall structure is very similar. This indicates the need for high conservation of the three-dimensional structure for this type of reaction throughout all kingdoms of life. Nevertheless, this structure provides the closest relative to the human enzyme that is currently available for modelling studies. Of note, the crystal structure of ZvPNO reveals a unique dimeric arrangement as well as small conformational changes within the active site that have not been observed before. A newly observed kink within helix α8 close to the substrate-binding path might indicate a potential mechanism for product release. The data show that even single amino-acid exchanges in the substrate-entry path, rather than the binding site, have a significant impact on the specific enzyme activity of the isoforms.
Collapse
Affiliation(s)
- Christian Kubitza
- Structural Biology, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Annette Faust
- Structural Biology, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Miriam Gutt
- Biochemical Ecology and Molecular Evolution, Botanical Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Luzia Gäth
- Structural Biology, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Dietrich Ober
- Biochemical Ecology and Molecular Evolution, Botanical Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Axel J Scheidig
- Structural Biology, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
13
|
Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chem Rev 2018; 118:1742-1769. [DOI: 10.1021/acs.chemrev.7b00650] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Gadda
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
14
|
Rossner R, Kaeberlein M, Leiser SF. Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes. J Biol Chem 2017; 292:11138-11146. [PMID: 28515321 DOI: 10.1074/jbc.r117.779678] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Flavin-containing monooxygenases (FMOs) are primarily studied as xenobiotic metabolizing enzymes with a prominent role in drug metabolism. In contrast, endogenous functions and substrates of FMOs are less well understood. A growing body of recent evidence, however, implicates FMOs in aging, several diseases, and metabolic pathways. The evidence suggests an important role for these well-conserved proteins in multiple processes and raises questions about the endogenous substrate(s) and regulation of FMOs. Here, we present an overview of evidence for FMOs' involvement in aging and disease, discussing the biological context and arguing for increased investigation into the function of these enzymes.
Collapse
Affiliation(s)
- Ryan Rossner
- From the Department of Pathology, University of Washington, Seattle, Washington 98195 and
| | - Matt Kaeberlein
- From the Department of Pathology, University of Washington, Seattle, Washington 98195 and
| | - Scott F Leiser
- the Departments of Molecular & Integrative Physiology and .,Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
15
|
Li CY, Chen XL, Zhang D, Wang P, Sheng Q, Peng M, Xie BB, Qin QL, Li PY, Zhang XY, Su HN, Song XY, Shi M, Zhou BC, Xun LY, Chen Y, Zhang YZ. Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N-oxide. Mol Microbiol 2017; 103:992-1003. [PMID: 27997715 DOI: 10.1111/mmi.13605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 11/28/2022]
Abstract
Trimethylamine (TMA) and trimethylamine N-oxide (TMAO) are widespread in the ocean and are important nitrogen source for bacteria. TMA monooxygenase (Tmm), a bacterial flavin-containing monooxygenase (FMO), is found widespread in marine bacteria and is responsible for converting TMA to TMAO. However, the molecular mechanism of TMA oxygenation by Tmm has not been explained. Here, we determined the crystal structures of two reaction intermediates of a marine bacterial Tmm (RnTmm) and elucidated the catalytic mechanism of TMA oxidation by RnTmm. The catalytic process of Tmm consists of a reductive half-reaction and an oxidative half-reaction. In the reductive half-reaction, FAD is reduced and a C4a-hydroperoxyflavin intermediate forms. In the oxidative half-reaction, this intermediate attracts TMA through electronic interactions. After TMA binding, NADP+ bends and interacts with D317, shutting off the entrance to create a protected micro-environment for catalysis and exposing C4a-hydroperoxyflavin to TMA for oxidation. Sequence analysis suggests that the proposed catalytic mechanism is common for bacterial Tmms. These findings reveal the catalytic process of TMA oxidation by marine bacterial Tmm and first show that NADP+ undergoes a conformational change in the oxidative half-reaction of FMOs.
Collapse
Affiliation(s)
- Chun-Yang Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Dian Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Qi Sheng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Ming Peng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Bai-Cheng Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Lu-Ying Xun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, 250100, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Human flavin-containing monooxygenase 3: Structural mapping of gene polymorphisms and insights into molecular basis of drug binding. Gene 2016; 593:91-99. [DOI: 10.1016/j.gene.2016.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/07/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022]
|
17
|
Saraav I, Pandey K, Misra R, Singh S, Sharma M, Sharma S. Characterization of MymA protein as a flavin-containing monooxygenase and as a target of isoniazid. Chem Biol Drug Des 2016; 89:152-160. [DOI: 10.1111/cbdd.12840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/12/2016] [Accepted: 08/06/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Iti Saraav
- D S Kothari Centre for Research and Innovation in Science Education; Miranda House; Delhi India
- Department of Zoology; Miranda House, University of Delhi; Delhi India
| | - Kirti Pandey
- D S Kothari Centre for Research and Innovation in Science Education; Miranda House; Delhi India
- Department of Zoology; Miranda House, University of Delhi; Delhi India
| | - Richa Misra
- D S Kothari Centre for Research and Innovation in Science Education; Miranda House; Delhi India
- Department of Zoology; Miranda House, University of Delhi; Delhi India
| | - Swati Singh
- D S Kothari Centre for Research and Innovation in Science Education; Miranda House; Delhi India
- Department of Zoology; Miranda House, University of Delhi; Delhi India
| | - Monika Sharma
- D S Kothari Centre for Research and Innovation in Science Education; Miranda House; Delhi India
- Department of Zoology; Miranda House, University of Delhi; Delhi India
| | - Sadhna Sharma
- D S Kothari Centre for Research and Innovation in Science Education; Miranda House; Delhi India
- Department of Zoology; Miranda House, University of Delhi; Delhi India
| |
Collapse
|
18
|
Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin. Biotechnol Lett 2015; 37:1637-44. [DOI: 10.1007/s10529-015-1824-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
|
19
|
Jensen CN, Ali ST, Allen MJ, Grogan G. Exploring nicotinamide cofactor promiscuity in NAD(P)H-dependent flavin containing monooxygenases (FMOs) using natural variation within the phosphate binding loop. Structure and activity of FMOs from Cellvibrio sp. BR and Pseudomonas stutzeri NF13. ACTA ACUST UNITED AC 2014; 109:191-198. [PMID: 25383040 PMCID: PMC4220118 DOI: 10.1016/j.molcatb.2014.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/18/2014] [Accepted: 08/30/2014] [Indexed: 02/02/2023]
Abstract
Genes encoding ‘Type II FMOs’ CFMO and PSFMO were selected for diversity in the NADPH binding loop. CFMO and PSFMO were shown to both accept either NADH or NADPH as cofactor in the reduction of FAD. The activities with both NADPH and NADH have been evaluated in the oxidation of sulfide substrates. Structures of CFMO and PSFMO were solved, revealing the nature of the NADPH phosphate binding loop.
Flavin-containing monooxygenases (FMOs) catalyse asymmetric oxidation reactions that have potential for preparative organic synthesis, but most use the more expensive, phosphorylated nicotinamide cofactor NADPH to reduce FAD to FADH2 prior to formation of the (hydro)peroxy intermediate required for substrate oxygenation. A comparison of the structures of NADPH-dependent FMO from Methylophaga aminisulfidivorans (mFMO) and SMFMO from Stenotrophomonas maltophilia, which is able to use both NADPH and NADH, suggested that the promiscuity of the latter enzyme may be due in part to the substitution of an Arg–Thr couple in the NADPH phosphate recognition site in mFMO, for a Gln–His couple in SMFMO (Jensen et al., 2012, Chembiochem, 13, 872–878). Natural variation within the phosphate binding region, and its influence on nicotinamide cofactor promiscuity, was explored through the cloning, expression, characterisation and structural studies of FMOs from Cellvibrio sp. BR (CFMO) and Pseudomonas stutzeri NF13 (PSFMO), which possess Thr–Ser and Gln–Glu in the putative phosphate recognition positions, respectively. CFMO and PSFMO displayed 5- and 1.5-fold greater activity, respectively, than SMFMO for the reduction of FAD with NADH, and were also cofactor promiscuous, displaying a ratio of activity with NADH:NADPH of 1.7:1 and 1:1.3, respectively. The structures of CFMO and PSFMO revealed the context of the phosphate binding loop in each case, and also clarified the structure of the mobile helix–loop–helix motif that appears to shield the FAD-binding pocket from bulk solvent in this class of FMOs, a feature that was absent from the structure of SMFMO.
Collapse
Affiliation(s)
- Chantel N Jensen
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Sohail T Ali
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
20
|
Jensen CN, Ali ST, Allen MJ, Grogan G. Mutations of an NAD(P)H-dependent flavoprotein monooxygenase that influence cofactor promiscuity and enantioselectivity. FEBS Open Bio 2013; 3:473-8. [PMID: 24251114 PMCID: PMC3829993 DOI: 10.1016/j.fob.2013.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 11/12/2022] Open
Abstract
The flavoprotein monooxygenase (FPMO) from Stenotrophomonas maltophilia (SMFMO, Uniprot: B2FLR2) catalyses the asymmetric oxidation of thioethers and is unusual amongst FPMOs in its ability to use the non-phosphorylated cofactor NADH, as well as NADPH, for the reduction of the FAD coenzyme. In order to explore the basis for cofactor promiscuity, structure-guided mutation of two residues in the cofactor binding site, Gln193 and His194, in SMFMO were performed in an attempt to imitate the cofactor binding site of the NADPH-dependent FMO from Methylophaga aminisulfidivorans sp. SK1 (mFMO), in which structurally homologous residues Arg234 and Thr235 bind the NADPH 2′-ribose phosphate. Mutation of His194 to threonine proved most significant, with a switch in specificity from NADH to NADPH [(kcat/Km NADH)/kcat/Km NADPH) from 1.5:1 to 1:3.5, mostly as a result of a reduced Km for NADPH of approximately sevenfold in the His194Thr mutant. The structure of the Gln193Arg/His194Thr mutant revealed no substantial changes in the backbone of the enzyme or orientation of side chains resulting from mutation. Mutation of Phe52, in the vicinity of FAD, and which in mFMO is an asparagine thought to be responsible for flavin hydroperoxide stabilisation, is, in SMFMO, a determinant of enantioselectivity in sulfoxidation. Mutation of Phe52 to valine resulted in a mutant that transformed para-tolyl methyl sulfide into the (S)-sulfoxide with 32% e.e., compared to 25% (R)- for the wild type. These results shed further light both on the cofactor specificity of FPMOs, and their determinants of enantioselectivity, with a view to informing engineering studies of FPMOs in the future. SMFMO was mutated to investigate cofactor specificity and enantioselectivity. The Gln193Arg/His194Thr mutant displayed a preference for NADPH, rather than NADH. The structure of the Gln193Arg/His194Thr mutant was determined. Active site mutants were assessed for enantioselectivity in sulfoxidation reactions. The Phe52Val mutant displayed inverted enantioselectivity.
Collapse
Affiliation(s)
- Chantel N Jensen
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | | | | | |
Collapse
|
21
|
Han GH, Gim GH, Kim W, Seo SI, Kim SW. Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation. J Biotechnol 2012; 164:179-87. [PMID: 22954889 DOI: 10.1016/j.jbiotec.2012.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 10/28/2022]
Abstract
In our previous study, a batch fermentation of recombinant Escherichia coli DH5α cells harboring the fmo gene from Methylophaga aminisulfidivorans MP(T) produced indirubin (5.0mg/L) and indigo (920mg/L) in a 5L fermenter containing tryptophan medium (2g/L tryptophan, 5g/L yeast extract, 10g/L NaCl). In this study, it was found that indirubin production greatly increased when 0.36g/L cysteine was added to the tryptophan medium, although cysteine inhibited the growth of the recombinant E. coli harboring the fmo gene. However, the addition of cysteine did not inhibit the expression level and activity of FMO in the cell. Indigo was synthesized by the dimerization of two 3-hydroxyindole molecules under the non-enzymatic reaction. Cysteine influenced the regioselectivity of FMO and enhanced the synthesis of 2-hydroxyindole instead of 3-hydroxyindole, which might function to increase indirubin production. The optimal culture conditions for indirubin production in tryptophan medium were determined from the response surface methodology analysis: 2g/L tryptophan, 5g/L yeast extract, 10g/L NaCl, 0.36g/L (3mM) cysteine, pH 8.0 at 35°C. Under these conditions, the recombinant E. coli cells were capable of producing 223.6mg/L of indirubin from 2g/L of tryptophan. The intracellular accumulation of the indirubin crystals might stress the cell, which may be a main reason for the poor growth of the recombinant E. coli pBlue 1.7.
Collapse
Affiliation(s)
- Gui Hwan Han
- Department of Environmental Engineering, Chosun University, Gwangju, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Jensen CN, Cartwright J, Ward J, Hart S, Turkenburg JP, Ali ST, Allen MJ, Grogan G. A flavoprotein monooxygenase that catalyses a Baeyer-Villiger reaction and thioether oxidation using NADH as the nicotinamide cofactor. Chembiochem 2012; 13:872-8. [PMID: 22416037 DOI: 10.1002/cbic.201200006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 11/10/2022]
Abstract
A gene from the marine bacterium Stenotrophomonas maltophilia encodes a 38.6 kDa FAD-containing flavoprotein (Uniprot B2FLR2) named S. maltophilia flavin-containing monooxygenase (SMFMO), which catalyses the oxidation of thioethers and also the regioselective Baeyer-Villiger oxidation of the model substrate bicyclo[3.2.0]hept-2-en-6-one. The enzyme was unusual in its ability to employ either NADH or NADPH as nicotinamide cofactor. The K(M) and k(cat) values for NADH were 23.7±9.1 μM and 0.029 s(-1) and 27.3±5.3 μM and 0.022 s(-1) for NADPH. However, k(cat) /K(M) value for the ketone substrate in the presence of 100 μM cofactor was 17 times greater for NADH than for NADPH. SMFMO catalysed the quantitative conversion of 5 mM ketone in the presence of substoichiometric concentrations of NADH with the formate dehydrogenase cofactor recycling system, to give the 2-oxa and 3-oxa lactone products of Baeyer-Villiger reaction in a ratio of 5:1, albeit with poor enantioselectivity. The conversion with NADPH was 15 %. SMFMO also catalysed the NADH-dependent transformation of prochiral aromatic thioethers, giving in the best case, 80 % ee for the transformation of p-chlorophenyl methyl sulfide to its R enantiomer. The structure of SMFMO reveals that the relaxation in cofactor specificity appears to be accomplished by the substitution of an arginine residue, responsible for recognition of the 2'-phosphate on the NADPH ribose in related NADPH-dependent FMOs, with a glutamine residue in SMFMO. SMFMO is thus representative of a separate class of single-component, flavoprotein monooxygenases that catalyse NADH-dependent oxidations from which possible sequences and strategies for developing NADH-dependent biocatalysts for asymmetric oxygenation reactions might be identified.
Collapse
Affiliation(s)
- Chantel N Jensen
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Olucha J, Lamb AL. Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases. Bioorg Chem 2011; 39:171-7. [PMID: 21871647 PMCID: PMC3188341 DOI: 10.1016/j.bioorg.2011.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
The N-hydroxylating flavoprotein monooxygenases are siderophore biosynthetic enzymes that catalyze the hydroxylation of the sidechain amino-group of ornithine or lysine or the primary amino-group of putrescine. This hydroxylated product is subsequently formylated or acylated and incorporated into the siderophore. Importantly, the modified amino-group is a hydroxamate and serves as an iron chelating moiety in the siderophore. This review describes recent work to characterize the ornithine hydroxylases from Pseudomonas aeruginosa (PvdA) and Aspergillus fumigatus (SidA) and the lysine hydroxylase from Escherichia coli (IucD). This includes summaries of steady and transient state kinetic data for all three enzymes and the X-ray crystallographic structure of PvdA.
Collapse
Affiliation(s)
- Jose Olucha
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, Kansas
| | - Audrey L. Lamb
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, Kansas
| |
Collapse
|
24
|
Olucha J, Meneely KM, Chilton AS, Lamb AL. Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa. J Biol Chem 2011; 286:31789-98. [PMID: 21757711 PMCID: PMC3173084 DOI: 10.1074/jbc.m111.265876] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/02/2011] [Indexed: 11/06/2022] Open
Abstract
The ornithine hydroxylase from Pseudomonas aeruginosa (PvdA) catalyzes the FAD-dependent hydroxylation of the side chain amine of ornithine, which is subsequently formylated to generate the iron-chelating hydroxamates of the siderophore pyoverdin. PvdA belongs to the class B flavoprotein monooxygenases, which catalyze the oxidation of substrates using NADPH as the electron donor and molecular oxygen. Class B enzymes include the well studied flavin-containing monooxygenases and Baeyer-Villiger monooxygenases. The first two structures of a class B N-hydroxylating monooxygenase were determined with FAD in oxidized (1.9 Å resolution) and reduced (3.03 Å resolution) states. PvdA has the two expected Rossmann-like dinucleotide-binding domains for FAD and NADPH and also a substrate-binding domain, with the active site at the interface between the three domains. The structures have NADP(H) and (hydroxy)ornithine bound in a solvent-exposed active site, providing structural evidence for substrate and co-substrate specificity and the inability of PvdA to bind FAD tightly. Structural and biochemical evidence indicates that NADP(+) remains bound throughout the oxidative half-reaction, which is proposed to shelter the flavin intermediates from solvent and thereby prevent uncoupling of NADPH oxidation from hydroxylated product formation.
Collapse
Affiliation(s)
- Jose Olucha
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Kathleen M. Meneely
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Annemarie S. Chilton
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Audrey L. Lamb
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|