1
|
Geerds C, Haas A, Niemann HH. Conformational changes of loops highlight a potential binding site in Rhodococcus equi VapB. Acta Crystallogr F Struct Biol Commun 2021; 77:246-253. [PMID: 34341190 PMCID: PMC8329714 DOI: 10.1107/s2053230x2100738x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/16/2021] [Indexed: 12/04/2022] Open
Abstract
Virulence-associated proteins (Vaps) contribute to the virulence of the pathogen Rhodococcus equi, but their mode of action has remained elusive. All Vaps share a conserved core of about 105 amino acids that folds into a compact eight-stranded antiparallel β-barrel with a unique topology. At the top of the barrel, four loops connect the eight β-strands. Previous Vap structures did not show concave surfaces that might serve as a ligand-binding site. Here, the structure of VapB in a new crystal form was determined at 1.71 Å resolution. The asymmetric unit contains two molecules. In one of them, the loop regions at the top of the barrel adopt a different conformation from other Vap structures. An outward movement of the loops results in the formation of a hydrophobic cavity that might act as a ligand-binding site. This lends further support to the hypothesis that the structural similarity between Vaps and avidins suggests a potential binding function for Vaps.
Collapse
Affiliation(s)
- Christina Geerds
- Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Albert Haas
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Strasse 61a, 53121 Bonn, Germany
| | - Hartmut H. Niemann
- Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
2
|
You C, Li F, Zhang X, Ma L, Zhang YZ, Zhang W, Li S. Structural basis for substrate specificity of the peroxisomal acyl-CoA hydrolase MpaH' involved in mycophenolic acid biosynthesis. FEBS J 2021; 288:5768-5780. [PMID: 33843134 DOI: 10.1111/febs.15874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
Mycophenolic acid (MPA) is a fungal natural product and first-line immunosuppressive drug for organ transplantations and autoimmune diseases. In the compartmentalized biosynthesis of MPA, the acyl-coenzyme A (CoA) hydrolase MpaH' located in peroxisomes catalyzes the highly specific hydrolysis of MPA-CoA to produce the final product MPA. The strict substrate specificity of MpaH' not only averts undesired hydrolysis of various cellular acyl-CoAs, but also prevents MPA-CoA from further peroxisomal β-oxidation catabolism. To elucidate the structural basis for this important property, in this study, we solve the crystal structures of the substrate-free form of MpaH' and the MpaH'S139A mutant in complex with the product MPA. The MpaH' structure reveals a canonical α/β-hydrolase fold with an unusually large cap domain and a rare location of the acidic residue D163 of catalytic triad after strand β6. MpaH' also forms an atypical dimer with the unique C-terminal helices α13 and α14 arming the cap domain of the other protomer and indirectly participating in the substrate binding. With these characteristics, we propose that MpaH' and its homologs form a new subfamily of α/β hydrolase fold protein. The crystal structure of MpaH'S139A /MPA complex and the modeled structure of MpaH'/MPA-CoA, together with the structure-guided mutagenesis analysis and isothermal titration calorimetry (ITC) measurements, provide important mechanistic insights into the high substrate specificity of MpaH'.
Collapse
Affiliation(s)
- Cai You
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fengwei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China
| |
Collapse
|
3
|
Abstract
Mycophenolic acid (MPA) from filamentous fungi is the first natural product antibiotic to be isolated and crystallized, and a first-line immunosuppressive drug for organ transplantations and autoimmune diseases. However, some key biosynthetic mechanisms of such an old and important molecule have remained unclear. Here, we elucidate the MPA biosynthetic pathway that features both compartmentalized enzymatic steps and unique cooperation between biosynthetic and β-oxidation catabolism machineries based on targeted gene inactivation, feeding experiments in heterologous expression hosts, enzyme functional characterization and kinetic analysis, and microscopic observation of protein subcellular localization. Besides identification of the oxygenase MpaB' as the long-sought key enzyme responsible for the oxidative cleavage of the farnesyl side chain, we reveal the intriguing pattern of compartmentalization for the MPA biosynthetic enzymes, including the cytosolic polyketide synthase MpaC' and O-methyltransferase MpaG', the Golgi apparatus-associated prenyltransferase MpaA', the endoplasmic reticulum-bound oxygenase MpaB' and P450-hydrolase fusion enzyme MpaDE', and the peroxisomal acyl-coenzyme A (CoA) hydrolase MpaH'. The whole pathway is elegantly comediated by these compartmentalized enzymes, together with the peroxisomal β-oxidation machinery. Beyond characterizing the remaining outstanding steps of the MPA biosynthetic steps, our study highlights the importance of considering subcellular contexts and the broader cellular metabolism in natural product biosynthesis.
Collapse
|
4
|
Buss M, Geerds C, Patschkowski T, Niehaus K, Niemann HH. Perfect merohedral twinning combined with noncrystallographic symmetry potentially causes the failure of molecular replacement with low-homology search models for the flavin-dependent halogenase HalX from Xanthomonas campestris. Acta Crystallogr F Struct Biol Commun 2018; 74:345-350. [PMID: 29870018 PMCID: PMC5987742 DOI: 10.1107/s2053230x18006933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/06/2018] [Indexed: 03/27/2024] Open
Abstract
Flavin-dependent halogenases can be used as biocatalysts because they regioselectively halogenate their substrates under mild reaction conditions. New halogenases with novel substrate specificities will add to the toolbox of enzymes available to organic chemists. HalX, the product of the xcc-b100_4193 gene, is a putative flavin-dependent halogenase from Xanthomonas campestris. The enzyme was recombinantly expressed and crystallized in order to aid in identifying its hitherto unknown substrate. Native data collected to a resolution of 2.5 Å showed indications of merohedral twinning in a hexagonal lattice. Attempts to solve the phase problem by molecular replacement failed. Here, a detailed analysis of the suspected twinning is presented. It is most likely that the crystals are trigonal (point group 3) and exhibit perfect hemihedral twinning so that they appear to be hexagonal (point group 6). As there are several molecules in the asymmetric unit, noncrystallographic symmetry may complicate twinning analysis and structure determination.
Collapse
Affiliation(s)
- Maren Buss
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Christina Geerds
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Thomas Patschkowski
- Faculty of Biology, Proteome and Metabolome Research, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Centre of Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Karsten Niehaus
- Faculty of Biology, Proteome and Metabolome Research, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Centre of Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Hartmut H. Niemann
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
5
|
Castanheira DD, Santana EP, Godoy-Santos F, Diniz RHS, Faria-Oliveira F, Pereira RR, Trópia MJM, Castro IM, Brandão RL. Lpx1p links glucose-induced calcium signaling and plasma membrane H+-ATPase activation in Saccharomyces cerevisiae cells. FEMS Yeast Res 2018; 18:4643176. [PMID: 29177424 DOI: 10.1093/femsyr/fox088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/17/2017] [Indexed: 11/12/2022] Open
Abstract
In yeast, as in other eukaryotes, calcium plays an essential role in signaling transduction to regulate different processes. Many pieces of evidence suggest that glucose-induced activation of plasma membrane H+-ATPase, essential for yeast physiology, is related to calcium signaling. Until now, no protein that could be regulated by calcium in this context has been identified. Lpx1p, a serine-protease that is also involved in the glucose-induced activation of the plasma membrane H+-ATPase, could be a candidate to respond to intracellular calcium signaling involved in this process. In this work, by using different approaches, we obtained many pieces of evidence suggesting that the requirement of calcium signaling for activation of the plasma membrane H+-ATPase is due to its requirement for activation of Lpx1p. According to the current model, activation of Lpx1p would cause hydrolysis of an acetylated tubulin that maintains the plasma membrane H+-ATPase in an inactive state. Therefore, after its activation, Lpx1p would hydrolyze the acetylated tubulin making the plasma membrane H+-ATPase accessible for phosphorylation by at least one protein kinase.
Collapse
Affiliation(s)
- Diogo Dias Castanheira
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, Ouro Preto, MG 35.400-000, Brazil
| | - Eduardo Perovano Santana
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, Ouro Preto, MG 35.400-000, Brazil
| | - Fernanda Godoy-Santos
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, Ouro Preto, MG 35.400-000, Brazil
| | - Raphael Hermano Santos Diniz
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, Ouro Preto, MG 35.400-000, Brazil
| | - Fábio Faria-Oliveira
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, Ouro Preto, MG 35.400-000, Brazil
| | - Renata Rebeca Pereira
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, Ouro Preto, MG 35.400-000, Brazil
| | - Maria José Magalhães Trópia
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, Ouro Preto, MG 35.400-000, Brazil
| | - Ieso Miranda Castro
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, Ouro Preto, MG 35.400-000, Brazil
| | - Rogelio Lopes Brandão
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, Ouro Preto, MG 35.400-000, Brazil
| |
Collapse
|
6
|
Casas-Godoy L, Gasteazoro F, Duquesne S, Bordes F, Marty A, Sandoval G. Lipases: An Overview. Methods Mol Biol 2018; 1835:3-38. [PMID: 30109644 DOI: 10.1007/978-1-4939-8672-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipases are ubiquitous enzymes, widespread in nature. They were first isolated from bacteria in the early nineteenth century, and the associated research continuously increased due to the characteristics of these enzymes. This chapter reviews the main sources, structural properties, and industrial applications of these highly studied enzymes.
Collapse
Affiliation(s)
- Leticia Casas-Godoy
- Cátedras CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico.
| | - Francisco Gasteazoro
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Sophie Duquesne
- Université de Toulouse, INSA, UPS, INP; LISBP, Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Florence Bordes
- Université de Toulouse, INSA, UPS, INP; LISBP, Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Alain Marty
- Université de Toulouse, INSA, UPS, INP; LISBP, Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Georgina Sandoval
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| |
Collapse
|
7
|
Bersch K, Lobos Matthei I, Thoms S. Multiple Localization by Functional Translational Readthrough. Subcell Biochem 2018; 89:201-219. [PMID: 30378024 DOI: 10.1007/978-981-13-2233-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In a compartmentalized cell, correct protein localization is crucial for function of virtually all cellular processes. From the cytoplasm as a starting point, proteins are imported into organelles by specific targeting signals. Many proteins, however, act in more than one cellular compartment. In this chapter, we discuss mechanisms by which proteins can be targeted to multiple organelles with a focus on a novel gene regulatory mechanism, functional translational readthrough, that permits multiple targeting of proteins to the peroxisome and other organelles. In mammals, lactate and malate dehydrogenase are the best-characterized enzymes whose targeting is controlled by functional translational readthrough.
Collapse
Affiliation(s)
- Kristina Bersch
- Department of Child and Adolescent Health, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Ignacio Lobos Matthei
- Department of Child and Adolescent Health, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Sven Thoms
- Department of Child and Adolescent Health, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
8
|
Singh MK, Shivakumaraswamy S, Gummadi SN, Manoj N. Role of an N-terminal extension in stability and catalytic activity of a hyperthermostable α/β hydrolase fold esterase. Protein Eng Des Sel 2017; 30:559-570. [PMID: 28967962 DOI: 10.1093/protein/gzx049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
The carbohydrate esterase family 7 (CE7) enzymes catalyze the deacetylation of acetyl esters of a broad range of alcohols and is unique in its activity towards cephalosporin C. The CE7 fold contains a conserved N-terminal extension that distinguishes it from the canonical α/β hydrolase fold. The hexameric quaternary structure indicates that the N-terminus may affect activity and specificity by controlling access of substrates to the buried active sites via an entrance tunnel. In this context, we characterized the catalytic parameters, conformation and thermal stability of two truncation variants lacking four and ten residues of the N-terminal region of the hyperthermostable Thermotoga maritima CE7 acetyl esterase (TmAcE). The truncations did not affect the secondary structure or the fold but modulated the oligomerization dynamics. A modest increase was observed in substrate specificity for acetylated xylose compared with acetylated glucose. A drastic reduction of ~30-40°C in the optimum temperature for activity of the variants indicated lower thermal stability. The loss of hyperthermostability appears to be an indirect effect associated with an increase in the conformational flexibility of an otherwise rigid neighboring loop containing a catalytic triad residue. The results suggest that the N-terminal extension was evolutionarily selected to preserve the stability of the enzyme.
Collapse
Affiliation(s)
- Mrityunjay K Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Santosh Shivakumaraswamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Sathyanarayana N Gummadi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
9
|
Istvan ES, Mallari JP, Corey VC, Dharia NV, Marshall GR, Winzeler EA, Goldberg DE. Esterase mutation is a mechanism of resistance to antimalarial compounds. Nat Commun 2017; 8:14240. [PMID: 28106035 PMCID: PMC5263872 DOI: 10.1038/ncomms14240] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/12/2016] [Indexed: 11/09/2022] Open
Abstract
Pepstatin is a potent peptidyl inhibitor of various malarial aspartic proteases, and also has parasiticidal activity. Activity of pepstatin against cultured Plasmodium falciparum is highly variable depending on the commercial source. Here we identify a minor contaminant (pepstatin butyl ester) as the active anti-parasitic principle. We synthesize a series of derivatives and characterize an analogue (pepstatin hexyl ester) with low nanomolar activity. By selecting resistant parasite mutants, we find that a parasite esterase, PfPARE (P. falciparum Prodrug Activation and Resistance Esterase) is required for activation of esterified pepstatin. Parasites with esterase mutations are resistant to pepstatin esters and to an open source antimalarial compound, MMV011438. Recombinant PfPARE hydrolyses pepstatin esters and de-esterifies MMV011438. We conclude that (1) pepstatin is a potent but poorly bioavailable antimalarial; (2) PfPARE is a functional esterase that is capable of activating prodrugs; (3) Mutations in PfPARE constitute a mechanism of antimalarial resistance. Pepstatin is a known inhibitor of malarial proteases, but its activity varies between sources. Here, Istvan et al. identify a pepstatin ester as the active component of pepstatin preparations and show that this prodrug is activated by a Plasmodium esterase, mutation of which can confer resistance to pepstatin and other compounds.
Collapse
Affiliation(s)
- Eva S Istvan
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Jeremy P Mallari
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Victoria C Corey
- Department of Pediatrics, School of Medicine, University of California San Diego School of Medicine, La Jolla, California 92093, USA
| | - Neekesh V Dharia
- Department of Pediatrics, School of Medicine, University of California San Diego School of Medicine, La Jolla, California 92093, USA
| | - Garland R Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California San Diego School of Medicine, La Jolla, California 92093, USA
| | - Daniel E Goldberg
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| |
Collapse
|
10
|
Abstract
Peroxisomes are capable of importing folded and oligomeric proteins. However, it is a matter of dispute whether oligomer import by peroxisomes is the exception or the rule. Here, I argue for a clear distinction between homo-oligomeric proteins that are essentially peroxisomal, and dually localized hetero-oligomers that access the peroxisome by piggyback import, localizing there in limited number, whereas the majority remain in the cytosol. Homo-oligomeric proteins comprise the majority of all peroxisomal matrix proteins. There is evidence that binding by Pex5 in the cytosol can regulate their oligomerization state before import. The hetero-oligomer group is made up of superoxide dismutase and lactate dehydrogenase. These proteins have evolved mechanisms that render import inefficient and retain the majority of proteins in the cytosol.
Collapse
Affiliation(s)
- Sven Thoms
- Department of Child and Adolescent Medicine, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
11
|
An extended loop in CE7 carbohydrate esterase family is dispensable for oligomerization but required for activity and thermostability. J Struct Biol 2016; 194:434-45. [DOI: 10.1016/j.jsb.2016.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 11/20/2022]
|
12
|
Conserved targeting information in mammalian and fungal peroxisomal tail-anchored proteins. Sci Rep 2015; 5:17420. [PMID: 26627908 PMCID: PMC4667187 DOI: 10.1038/srep17420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/22/2015] [Indexed: 11/22/2022] Open
Abstract
The targeting signals and mechanisms of soluble peroxisomal proteins are well understood, whereas less is known about the signals and targeting routes of peroxisomal membrane proteins (PMP). Pex15 and PEX26, tail-anchored proteins in yeast and mammals, respectively, exert a similar cellular function in the recruitment of AAA peroxins at the peroxisomal membrane. But despite their common role, Pex15 and PEX26 are neither homologs nor they are known to follow similar targeting principles. Here we show that Pex15 targets to peroxisomes in mammalian cells, and PEX26 reaches peroxisomes when expressed in yeast cells. In both proteins C-terminal targeting information is sufficient for correct sorting to the peroxisomal membrane. In yeast, PEX26 follows the pathway that also ensures correct targeting of Pex15: PEX26 enters the endoplasmic reticulum (ER) in a GET-dependent and Pex19-independent manner. Like in yeast, PEX26 enters the ER in mammalian cells, however, independently of GET/TRC40. These data show that conserved targeting information is employed in yeast and higher eukaryotes during the biogenesis of peroxisomal tail-anchored proteins.
Collapse
|
13
|
Fung HKH, Gadd MS, Drury TA, Cheung S, Guss JM, Coleman NV, Matthews JM. Biochemical and biophysical characterisation of haloalkane dehalogenases DmrA and DmrB in Mycobacterium strain JS60 and their role in growth on haloalkanes. Mol Microbiol 2015; 97:439-53. [PMID: 25899475 DOI: 10.1111/mmi.13039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2015] [Indexed: 01/13/2023]
Abstract
Haloalkane dehalogenases (HLDs) catalyse the hydrolysis of haloalkanes to alcohols, offering a biological solution for toxic haloalkane industrial wastes. Hundreds of putative HLD genes have been identified in bacterial genomes, but relatively few enzymes have been characterised. We identified two novel HLDs in the genome of Mycobacterium rhodesiae strain JS60, an isolate from an organochlorine-contaminated site: DmrA and DmrB. Both recombinant enzymes were active against C2-C6 haloalkanes, with a preference for brominated linear substrates. However, DmrA had higher activity against a wider range of substrates. The kinetic parameters of DmrA with 4-bromobutyronitrile as a substrate were Km = 1.9 ± 0.2 mM, kcat = 3.1 ± 0.2 s(-1) . DmrB showed the highest activity against 1-bromohexane. DmrA is monomeric, whereas DmrB is tetrameric. We determined the crystal structure of selenomethionyl DmrA to 1.7 Å resolution. A spacious active site and alternate conformations of a methionine side-chain in the slot access tunnel may contribute to the broad substrate activity of DmrA. We show that M. rhodesiae JS60 can utilise 1-iodopropane, 1-iodobutane and 1-bromobutane as sole carbon and energy sources. This ability appears to be conferred predominantly through DmrA, which shows significantly higher levels of upregulation in response to haloalkanes than DmrB.
Collapse
Affiliation(s)
- Herman K H Fung
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Morgan S Gadd
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas A Drury
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Samantha Cheung
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - J Mitchell Guss
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicholas V Coleman
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | | |
Collapse
|
14
|
Schueren F, Lingner T, George R, Hofhuis J, Dickel C, Gärtner J, Thoms S. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. eLife 2014; 3:e03640. [PMID: 25247702 PMCID: PMC4359377 DOI: 10.7554/elife.03640] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/22/2014] [Indexed: 01/24/2023] Open
Abstract
Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB is targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit, into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes. DOI:http://dx.doi.org/10.7554/eLife.03640.001 Amino acids are the building blocks of proteins, and the order of the amino acids in a protein is determined by the order in which ‘codons’ appear in a messenger RNA molecule. Most codons represent a specific amino acid, but there are also three stop codons that are used to mark the end of a protein. When the cellular machinery that ‘translates’ the messenger RNA molecule into a protein encounters a stop codon, it stops and releases the completed protein. Sometimes, however, the stop codon is not interpreted as a stop signal, and the translation of the messenger RNA molecule continues until another stop codon is encountered. This process is known as readthrough. Some organisms, in particular viruses and fungi, use readthrough to produce a wider range of proteins than their genomes would otherwise allow. While readthrough also occurs in higher organisms such as mammals, it is not known if the resulting proteins perform extra functions that the original protein does not perform. A number of factors affect whether readthrough occurs when an mRNA template is being translated. For example, each of the three stop codons has a different likelihood of having its stop signal misinterpreted, and the mRNA sequence that surrounds the stop codon can also affect the likelihood of readthrough. Schueren et al. have developed a computational model that estimates how common this form of translational readthrough is in the human genome. The model was based on the identity of the stop codons themselves and the surrounding mRNA sequence. This model was then combined with another model that identifies proteins that are targeted to a structure inside a cell called the peroxisome, which is where a number of essential energy-releasing reactions take place. The combined model enabled Schueren et al. to identify proteins that both perform functions in the peroxisome and are likely to be formed by readthrough. The combined model suggested a protein that is a part of lactate dehydrogenase: an enzyme that speeds up chemical reactions that are important for the cell to produce energy. Low levels of lactate dehydrogenase had previously been found in the peroxisome, despite it apparently lacking a specific sequence of amino acids that proteins need to have to enter the peroxisome. However, Schueren et al. confirmed experimentally that readthrough does occur for the lactate dehydrogenase component identified by the model, revealing that it contains a ‘hidden’ peroxisome-targeting region. Furthermore, when more translational readthrough occurred, more lactate dehydrogenase was found in the peroxisomes. This unusual way that lactate dehydrogenase enters the peroxisome is an example of how the cell optimizes the used of the genetic information encoded in the genome and in messenger RNA. Translational readthrough always ensures that a certain proportion of lactate dehydrogenase will be brought to the peroxisome. The computational model developed here will be a valuable tool to identify other such proteins produced from genomes, including the human genome and those of other species. DOI:http://dx.doi.org/10.7554/eLife.03640.002
Collapse
Affiliation(s)
- Fabian Schueren
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Thomas Lingner
- Department of Bioinformatics, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Rosemol George
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Julia Hofhuis
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Corinna Dickel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Sven Thoms
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
Baile MG, Whited K, Claypool SM. Deacylation on the matrix side of the mitochondrial inner membrane regulates cardiolipin remodeling. Mol Biol Cell 2013; 24:2008-20. [PMID: 23637464 PMCID: PMC3681703 DOI: 10.1091/mbc.e13-03-0121] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the clinically relevant tafazzin-mediated cardiolipin (CL) remodeling pathway is incomplete. In this study, a new trafficking step required for CL remodeling has been identified. Further, it is demonstrated that flux through this CL remodeling pathway is controlled by the strength of the mitochondrial electrochemical gradient. The mitochondrial-specific lipid cardiolipin (CL) is required for numerous processes therein. After its synthesis on the matrix-facing leaflet of the inner membrane (IM), CL undergoes acyl chain remodeling to achieve its final form. In yeast, this process is completed by the transacylase tafazzin, which associates with intermembrane space (IMS)-facing membrane leaflets. Mutations in TAZ1 result in the X-linked cardiomyopathy Barth syndrome. Amazingly, despite this clear pathophysiological association, the physiological importance of CL remodeling is unresolved. In this paper, we show that the lipase initiating CL remodeling, Cld1p, is associated with the matrix-facing leaflet of the mitochondrial IM. Thus monolysocardiolipin generated by Cld1p must be transported to IMS-facing membrane leaflets to gain access to tafazzin, identifying a previously unknown step required for CL remodeling. Additionally, we show that Cld1p is the major site of regulation in CL remodeling; and that, like CL biosynthesis, CL remodeling is augmented in growth conditions requiring mitochondrially produced energy. However, unlike CL biosynthesis, dissipation of the mitochondrial membrane potential stimulates CL remodeling, identifying a novel feedback mechanism linking CL remodeling to oxidative phosphorylation capacity.
Collapse
Affiliation(s)
- Matthew G Baile
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
16
|
Menyhárd DK, Kiss-Szemán A, Tichy-Rács É, Hornung B, Rádi K, Szeltner Z, Domokos K, Szamosi I, Náray-Szabó G, Polgár L, Harmat V. A self-compartmentalizing hexamer serine protease from Pyrococcus horikoshii: substrate selection achieved through multimerization. J Biol Chem 2013; 288:17884-94. [PMID: 23632025 DOI: 10.1074/jbc.m113.451534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oligopeptidases impose a size limitation on their substrates, the mechanism of which has long been under debate. Here we present the structure of a hexameric serine protease, an oligopeptidase from Pyrococcus horikoshii (PhAAP), revealing a complex, self-compartmentalized inner space, where substrates may access the monomer active sites passing through a double-gated "check-in" system, first passing through a pore on the hexamer surface and then turning to enter through an even smaller opening at the monomers' domain interface. This substrate screening strategy is unique within the family. We found that among oligopeptidases, a residue of the catalytic apparatus is positioned near an amylogenic β-edge, which needs to be protected to prevent aggregation, and we found that different oligopeptidases use different strategies to achieve such an end. We propose that self-assembly within the family results in characteristically different substrate selection mechanisms coupled to different multimerization states.
Collapse
Affiliation(s)
- Dóra K Menyhárd
- Protein Modeling Research Group, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|