1
|
Corbella M, Pinto GP, Kamerlin SCL. Loop dynamics and the evolution of enzyme activity. Nat Rev Chem 2023; 7:536-547. [PMID: 37225920 DOI: 10.1038/s41570-023-00495-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
In the early 2000s, Tawfik presented his 'New View' on enzyme evolution, highlighting the role of conformational plasticity in expanding the functional diversity of limited repertoires of sequences. This view is gaining increasing traction with increasing evidence of the importance of conformational dynamics in both natural and laboratory evolution of enzymes. The past years have seen several elegant examples of harnessing conformational (particularly loop) dynamics to successfully manipulate protein function. This Review revisits flexible loops as critical participants in regulating enzyme activity. We showcase several systems of particular interest: triosephosphate isomerase barrel proteins, protein tyrosine phosphatases and β-lactamases, while briefly discussing other systems in which loop dynamics are important for selectivity and turnover. We then discuss the implications for engineering, presenting examples of successful loop manipulation in either improving catalytic efficiency, or changing selectivity completely. Overall, it is becoming clearer that mimicking nature by manipulating the conformational dynamics of key protein loops is a powerful method of tailoring enzyme activity, without needing to target active-site residues.
Collapse
Affiliation(s)
- Marina Corbella
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry, Uppsala University, Uppsala, Sweden
- Cortex Discovery GmbH, Regensburg, Germany
| | - Shina C L Kamerlin
- Department of Chemistry, Uppsala University, Uppsala, Sweden.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Lemay-St-Denis C, Alejaldre L, Jemouai Z, Lafontaine K, St-Aubin M, Hitache K, Valikhani D, Weerasinghe NW, Létourneau M, Thibodeaux CJ, Doucet N, Baron C, Copp JN, Pelletier JN. A conserved SH3-like fold in diverse putative proteins tetramerizes into an oxidoreductase providing an antimicrobial resistance phenotype. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220040. [PMID: 36633286 PMCID: PMC9835603 DOI: 10.1098/rstb.2022.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
We present a potential mechanism for emergence of catalytic activity that is essential for survival, from a non-catalytic protein fold. The type B dihydrofolate reductase (DfrB) family of enzymes were first identified in pathogenic bacteria because their dihydrofolate reductase activity is sufficient to provide trimethoprim (TMP) resistance. DfrB enzymes are described as poorly evolved as a result of their unusual structural and kinetic features. No characterized protein shares sequence homology with DfrB enzymes; how they evolved to emerge in the modern resistome is unknown. In this work, we identify DfrB homologues from a database of putative and uncharacterized proteins. These proteins include an SH3-like fold homologous to the DfrB enzymes, embedded in a variety of additional structural domains. By means of functional, structural and biophysical characterization, we demonstrate that these distant homologues and their extracted SH3-like fold can display dihydrofolate reductase activity and confer TMP resistance. We provide evidence of tetrameric assembly and catalytic mechanism analogous to that of DfrB enzymes. These results contribute, to our knowledge, the first insights into a potential evolutionary path taken by this SH3-like fold to emerge in the modern resistome following introduction of TMP. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Claudèle Lemay-St-Denis
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Lorea Alejaldre
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Zakaria Jemouai
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Kiana Lafontaine
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Maxime St-Aubin
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Katia Hitache
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Donya Valikhani
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Chemistry Department, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Nuwani W. Weerasinghe
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec H3A 0B8, Canada
| | - Myriam Létourneau
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Québec H7V 1B7, Canada
| | - Christopher J. Thibodeaux
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec H3A 0B8, Canada
| | - Nicolas Doucet
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Québec H7V 1B7, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Janine N. Copp
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Joelle N. Pelletier
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Chemistry Department, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
3
|
Barkay T, Gu B. Demethylation─The Other Side of the Mercury Methylation Coin: A Critical Review. ACS ENVIRONMENTAL AU 2022; 2:77-97. [PMID: 37101582 PMCID: PMC10114901 DOI: 10.1021/acsenvironau.1c00022] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The public and environmental health consequences of mercury (Hg) methylation have drawn much attention and considerable research to Hg methylation processes and their dynamics in diverse environments and under a multitude of conditions. However, the net methylmercury (MeHg) concentration that accumulates in the environment is equally determined by the rate of MeHg degradation, a complex process mediated by a variety of biotic and abiotic mechanisms, about which our knowledge is limited. Here we review the current knowledge on MeHg degradation and its potential pathways and mechanisms. We describe detoxification by resistant microorganisms that employ the Hg resistance (mer) system to reductively break the carbon-mercury (C-Hg) bond producing methane (CH4) and inorganic mercuric Hg(II), which is then reduced by the mercuric reductase to elemental Hg(0). Very recent research has begun to elucidate a mechanism for the long-recognized mer-independent oxidative demethylation, likely involving some strains of anaerobic bacteria as well as aerobic methane-oxidizing bacteria, i.e., methanotrophs. In addition, photochemical and chemical demethylation processes are described, including the roles of dissolved organic matter (DOM) and free radicals as well as dark abiotic demethylation in the natural environment about which little is currently known. We focus on mechanisms and processes of demethylation and highlight the uncertainties and known effects of environmental factors leading to MeHg degradation. Finally, we suggest future research directions to further elucidate the chemical and biochemical mechanisms of biotic and abiotic demethylation and their significance in controlling net MeHg production in natural ecosystems.
Collapse
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
4
|
Christakis CA, Barkay T, Boyd ES. Expanded Diversity and Phylogeny of mer Genes Broadens Mercury Resistance Paradigms and Reveals an Origin for MerA Among Thermophilic Archaea. Front Microbiol 2021; 12:682605. [PMID: 34248899 PMCID: PMC8261052 DOI: 10.3389/fmicb.2021.682605] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mercury (Hg) is a highly toxic element due to its high affinity for protein sulfhydryl groups, which upon binding, can destabilize protein structure and decrease enzyme activity. Prokaryotes have evolved enzymatic mechanisms to detoxify inorganic Hg and organic Hg (e.g., MeHg) through the activities of mercuric reductase (MerA) and organomercury lyase (MerB), respectively. Here, the taxonomic distribution and evolution of MerAB was examined in 84,032 archaeal and bacterial genomes, metagenome assembled genomes, and single-cell genomes. Homologs of MerA and MerB were identified in 7.8 and 2.1% percent of genomes, respectively. MerA was identified in the genomes of 10 archaeal and 28 bacterial phyla previously unknown to code for this functionality. Likewise, MerB was identified in 2 archaeal and 11 bacterial phyla previously unknown to encode this functionality. Surprisingly, homologs of MerB were identified in a number of genomes (∼50% of all MerB-encoding genomes) that did not encode MerA, suggesting alternative mechanisms to detoxify Hg(II) once it is generated in the cytoplasm. Phylogenetic reconstruction of MerA place its origin in thermophilic Thermoprotei (Crenarchaeota), consistent with high levels of Hg(II) in geothermal environments, the natural habitat of this archaeal class. MerB appears to have been recruited to the mer operon relatively recently and likely among a mesophilic ancestor of Euryarchaeota and Thaumarchaeota. This is consistent with the functional dependence of MerB on MerA and the widespread distribution of mesophilic microorganisms that methylate Hg(II) at lower temperature. Collectively, these results expand the taxonomic and ecological distribution of mer-encoded functionalities, and suggest that selection for Hg(II) and MeHg detoxification is dependent not only on the availability and type of mercury compounds in the environment but also the physiological potential of the microbes who inhabit these environments. The expanded diversity and environmental distribution of MerAB identify new targets to prioritize for future research.
Collapse
Affiliation(s)
- Christos A. Christakis
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Eric S. Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
6
|
Kaur G, Subramanian S. Evolutionary relationship between the cysteine and histidine rich domains (CHORDs) and Btk-type zinc fingers. Bioinformatics 2019; 34:1981-1985. [PMID: 29390068 DOI: 10.1093/bioinformatics/bty041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/25/2018] [Indexed: 11/13/2022] Open
Abstract
Summary Cysteine and histidine rich domains (CHORDs), implicated in immunity and disease resistance signaling in plants, and in development and signal transduction in muscles and tumorigenesis in animals, are seen to have a cylindrical three-dimensional structure stabilized by the tetrahedral chelation of two zinc ions. CHORDs are regarded as novel zinc-binding domains and classified independently in Pfam and ECOD. Our sequence and structure analysis reveals that both the zinc-binding sites in CHORD possess a zinc ribbon fold and are likely related to each other by duplication and circular permutation. Interestingly, we also detect an evolutionary relationship between each of the CHORD zinc fingers (ZFs) and the Bruton's tyrosine kinase (Btk)-type ZF of the zinc ribbon fold group. Btk_ZF is found in eukaryotic Tec kinase family proteins that are also implicated in signaling pathways in several lineages of hematopoietic cells involved in mammalian immunity. Our analysis suggests that the unique zinc-stabilized fold seen only in the CHORD and Btk_ZFs likely emerged specifically in eukaryotes to mediate diverse signaling pathways. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gurmeet Kaur
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, India
| | | |
Collapse
|
10
|
Wahba HM, Lecoq L, Stevenson M, Mansour A, Cappadocia L, Lafrance-Vanasse J, Wilkinson KJ, Sygusch J, Wilcox DE, Omichinski JG. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity. Biochemistry 2016; 55:1070-81. [PMID: 26820485 DOI: 10.1021/acs.biochem.5b01298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.
Collapse
Affiliation(s)
- Haytham M Wahba
- Faculty of Pharmacy, Beni-suef University , Beni-suef, Egypt
| | | | - Michael Stevenson
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| | | | | | | | | | | | - Dean E Wilcox
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| | | |
Collapse
|
11
|
Kaur G, Subramanian S. The UBR-box and its relationship to binuclear RING-like treble clef zinc fingers. Biol Direct 2015; 10:36. [PMID: 26185100 PMCID: PMC4506424 DOI: 10.1186/s13062-015-0066-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/02/2015] [Indexed: 11/30/2022] Open
Abstract
Background The N-end rule pathway is a part of the ubiquitin–dependent proteolytic system wherein N-recognin proteins recognize the amino terminal degradation signals (N-degrons) of the substrate. The type 1 N-degron recognizing UBR-box domain of the eukaryotic Arg/N-end rule pathway is known to possess a novel three-zinc-stabilized heart-shaped fold. Results Using sequence and structure analysis we argue that the UBR-box fold emerged from a binuclear RING-like treble clef zinc finger. The RING-like core is preserved in the UBR-box and the metal-chelating motifs display significant sequence and structural similarity to B-box and ZZ domains. UBR-box domains retrieved in our analysis co-occur with a variety of other protein domains, suggestive of its involvement in diverse biological roles. The UBR-box is a unique family of RING-like treble clefs as it displays a distinct circular permutation at the zinc-knuckle of the first zinc-binding site unlike other documented permutations of the RING-like domains which occur at the second zinc-binding site. The circular permutation of the RING-like treble clef scaffold has possibly aided the gain of a novel and relatively deep cleft suited for binding N-degrons. The N- and C-terminal extensions to the circularly permuted RING-like region bind a third zinc ion, which likely provides additional stability to the domain by keeping the two halves of the permuted zinc-knuckle together. Conclusions Structural modifications and extensions to the RING-like core have resulted in a novel UBR-box fold, which can recognize and target the type 1 N-degron containing proteins for ubiquitin-mediated proteolysis. The UBR-box appears to have emerged during the expansion of ubiquitin system pathway-related functions in eukaryotes, but is also likely to have other non-N-recognin functions as well. Reviewers This article was reviewed by Eugene Koonin, Balaji Santhanam, Kira S. Makarova. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0066-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gurmeet Kaur
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, 160036, India.
| | - Srikrishna Subramanian
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|