1
|
Abstract
Cryo-electron microscopy (CryoEM) has become a vital technique in structural biology. It is an interdisciplinary field that takes advantage of advances in biochemistry, physics, and image processing, among other disciplines. Innovations in these three basic pillars have contributed to the boosting of CryoEM in the past decade. This work reviews the main contributions in image processing to the current reconstruction workflow of single particle analysis (SPA) by CryoEM. Our review emphasizes the time evolution of the algorithms across the different steps of the workflow differentiating between two groups of approaches: analytical methods and deep learning algorithms. We present an analysis of the current state of the art. Finally, we discuss the emerging problems and challenges still to be addressed in the evolution of CryoEM image processing methods in SPA.
Collapse
Affiliation(s)
- Jose Luis Vilas
- Biocomputing Unit, Centro
Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - Jose Maria Carazo
- Biocomputing Unit, Centro
Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro
Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
2
|
Harastani M, Eltsov M, Leforestier A, Jonic S. TomoFlow: Analysis of Continuous Conformational Variability of Macromolecules in Cryogenic Subtomograms based on 3D Dense Optical Flow. J Mol Biol 2021; 434:167381. [PMID: 34848215 DOI: 10.1016/j.jmb.2021.167381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/14/2023]
Abstract
Cryogenic Electron Tomography (cryo-ET) allows structural and dynamics studies of macromolecules in situ. Averaging different copies of imaged macromolecules is commonly used to obtain their structure at higher resolution and discrete classification to analyze their dynamics. Instrumental and data processing developments are progressively equipping cryo-ET studies with the ability to escape the trap of classification into a complete continuous conformational variability analysis. In this work, we propose TomoFlow, a method for analyzing macromolecular continuous conformational variability in cryo-ET subtomograms based on a three-dimensional dense optical flow (OF) approach. The resultant lower-dimensional conformational space allows generating movies of macromolecular motion and obtaining subtomogram averages by grouping conformationally similar subtomograms. The animations and the subtomogram group averages reveal accurate trajectories of macromolecular motion based on a novel mathematical model that makes use of OF properties. This paper describes TomoFlow with tests on simulated datasets generated using different techniques, namely Normal Mode Analysis and Molecular Dynamics Simulation. It also shows an application of TomoFlow on a dataset of nucleosomes in situ, which provided promising results coherent with previous findings using the same dataset but without imposing any prior knowledge on the analysis of the conformational variability. The method is discussed with its potential uses and limitations.
Collapse
Affiliation(s)
- Mohamad Harastani
- IMPMC - UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France; Laboratoire de Physique des Solides (LPS), UMR 8502 CNRS, Université Paris-Saclay, Orsay, France. https://twitter.com/moh_harastani
| | - Mikhail Eltsov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France. https://twitter.com/EltsovMikhail
| | - Amélie Leforestier
- Laboratoire de Physique des Solides (LPS), UMR 8502 CNRS, Université Paris-Saclay, Orsay, France
| | - Slavica Jonic
- IMPMC - UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
3
|
Herreros D, Lederman RR, Krieger J, Jiménez-Moreno A, Martínez M, Myška D, Strelak D, Filipovic J, Bahar I, Carazo JM, Sanchez COS. Approximating deformation fields for the analysis of continuous heterogeneity of biological macromolecules by 3D Zernike polynomials. IUCRJ 2021; 8:992-1005. [PMID: 34804551 PMCID: PMC8562670 DOI: 10.1107/s2052252521008903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/25/2021] [Indexed: 05/04/2023]
Abstract
Structural biology has evolved greatly due to the advances introduced in fields like electron microscopy. This image-capturing technique, combined with improved algorithms and current data processing software, allows the recovery of different conformational states of a macromolecule, opening new possibilities for the study of its flexibility and dynamic events. However, the ensemble analysis of these different conformations, and in particular their placement into a common variable space in which the differences and similarities can be easily recognized, is not an easy matter. To simplify the analysis of continuous heterogeneity data, this work proposes a new automatic algorithm that relies on a mathematical basis defined over the sphere to estimate the deformation fields describing conformational transitions among different structures. Thanks to the approximation of these deformation fields, it is possible to describe the forces acting on the molecules due to the presence of different motions. It is also possible to represent and compare several structures in a low-dimensional mapping, which summarizes the structural characteristics of different states. All these analyses are integrated into a common framework, providing the user with the ability to combine them seamlessly. In addition, this new approach is a significant step forward compared with principal component analysis and normal mode analysis of cryo-electron microscopy maps, avoiding the need to select components or modes and producing localized analysis.
Collapse
Affiliation(s)
- David Herreros
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin 3, Cantoblanco, Madrid 28049, Spain
| | - Roy R. Lederman
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - James Krieger
- Department of Computational and Systems Biology, University of Pittsburgh, Pennsylvania, USA
| | - Amaya Jiménez-Moreno
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin 3, Cantoblanco, Madrid 28049, Spain
| | - Marta Martínez
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin 3, Cantoblanco, Madrid 28049, Spain
| | - David Myška
- Institute of Computer Science, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
| | - David Strelak
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin 3, Cantoblanco, Madrid 28049, Spain
- Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
| | - Jiri Filipovic
- Institute of Computer Science, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, Pennsylvania, USA
| | - Jose Maria Carazo
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin 3, Cantoblanco, Madrid 28049, Spain
| | | |
Collapse
|
4
|
Advances in Xmipp for Cryo-Electron Microscopy: From Xmipp to Scipion. Molecules 2021; 26:molecules26206224. [PMID: 34684805 PMCID: PMC8537808 DOI: 10.3390/molecules26206224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Xmipp is an open-source software package consisting of multiple programs for processing data originating from electron microscopy and electron tomography, designed and managed by the Biocomputing Unit of the Spanish National Center for Biotechnology, although with contributions from many other developers over the world. During its 25 years of existence, Xmipp underwent multiple changes and updates. While there were many publications related to new programs and functionality added to Xmipp, there is no single publication on the Xmipp as a package since 2013. In this article, we give an overview of the changes and new work since 2013, describe technologies and techniques used during the development, and take a peek at the future of the package.
Collapse
|
5
|
Sorzano COS, Jiménez-Moreno A, Maluenda D, Ramírez-Aportela E, Martínez M, Cuervo A, Melero R, Conesa JJ, Sánchez-García R, Strelak D, Filipovic J, Fernández-Giménez E, de Isidro-Gómez F, Herreros D, Conesa P, Del Caño L, Fonseca Y, de la Morena JJ, Macías JR, Losana P, Marabini R, Carazo JM. Image Processing in Cryo-Electron Microscopy of Single Particles: The Power of Combining Methods. Methods Mol Biol 2021; 2305:257-289. [PMID: 33950394 DOI: 10.1007/978-1-0716-1406-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cryo-electron microscopy has established as a mature structural biology technique to elucidate the three-dimensional structure of biological macromolecules. The Coulomb potential of the sample is imaged by an electron beam, and fast semi-conductor detectors produce movies of the sample under study. These movies have to be further processed by a whole pipeline of image-processing algorithms that produce the final structure of the macromolecule. In this chapter, we illustrate this whole processing pipeline putting in value the strength of "meta algorithms," which are the combination of several algorithms, each one with different mathematical rationale, in order to distinguish correctly from incorrectly estimated parameters. We show how this strategy leads to superior performance of the whole pipeline as well as more confident assessments about the reconstructed structures. The "meta algorithms" strategy is common to many fields and, in particular, it has provided excellent results in bioinformatics. We illustrate this combination using the workflow engine, Scipion.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Cuervo
- National Centre for Biotechnology (CSIC), Madrid, Spain
| | - Robert Melero
- National Centre for Biotechnology (CSIC), Madrid, Spain
| | | | | | - David Strelak
- National Centre for Biotechnology (CSIC), Madrid, Spain
| | | | | | | | | | - Pablo Conesa
- National Centre for Biotechnology (CSIC), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Pyle E, Zanetti G. Current data processing strategies for cryo-electron tomography and subtomogram averaging. Biochem J 2021; 478:1827-1845. [PMID: 34003255 PMCID: PMC8133831 DOI: 10.1042/bcj20200715] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022]
Abstract
Cryo-electron tomography (cryo-ET) can be used to reconstruct three-dimensional (3D) volumes, or tomograms, from a series of tilted two-dimensional images of biological objects in their near-native states in situ or in vitro. 3D subvolumes, or subtomograms, containing particles of interest can be extracted from tomograms, aligned, and averaged in a process called subtomogram averaging (STA). STA overcomes the low signal to noise ratio within the individual subtomograms to generate structures of the particle(s) of interest. In recent years, cryo-ET with STA has increasingly been capable of reaching subnanometer resolution due to improvements in microscope hardware and data processing strategies. There has also been an increase in the number and quality of software packages available to process cryo-ET data with STA. In this review, we describe and assess the data processing strategies available for cryo-ET data and highlight the recent software developments which have enabled the extraction of high-resolution information from cryo-ET datasets.
Collapse
Affiliation(s)
- Euan Pyle
- Institute of Structural and Molecular Biology, Birkbeck College, Malet St., London WC1E 7HX, U.K
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, Malet St., London WC1E 7HX, U.K
| |
Collapse
|
7
|
Marabini R, Condezo GN, Krupovic M, Menéndez-Conejero R, Gómez-Blanco J, San Martín C. Near-atomic structure of an atadenovirus reveals a conserved capsid-binding motif and intergenera variations in cementing proteins. SCIENCE ADVANCES 2021; 7:eabe6008. [PMID: 33789897 PMCID: PMC8011978 DOI: 10.1126/sciadv.abe6008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Of five known adenovirus genera, high-resolution structures are available only for mammalian-infecting mastadenoviruses. We present the first high-resolution structure of an adenovirus with nonmammalian host: lizard atadenovirus LAdV-2. We find a large conformational difference in the internal vertex protein IIIa between mast- and atadenoviruses, induced by the presence of an extended polypeptide. This polypeptide, and α-helical clusters beneath the facet, likely correspond to genus-specific proteins LH2 and p32k. Another genus-specific protein, LH3, with a fold typical of bacteriophage tailspikes, contacts the capsid surface via a triskelion structure identical to that used by mastadenovirus protein IX, revealing a conserved capsid-binding motif and an ancient gene duplication event. Our data also suggest that mastadenovirus E1B-55 K was exapted from the atadenovirus-like LH3 protein. This work provides new information on the evolution of adenoviruses, emphasizing the importance of minor coat proteins for determining specific physicochemical properties of virions and most likely their tropism.
Collapse
Affiliation(s)
- Roberto Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 11, 28049 Madrid, Spain
| | - Gabriela N Condezo
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Rosa Menéndez-Conejero
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Josué Gómez-Blanco
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carmen San Martín
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Pérez-Illana M, Martínez M, Condezo GN, Hernando-Pérez M, Mangroo C, Brown M, Marabini R, San Martín C. Cryo-EM structure of enteric adenovirus HAdV-F41 highlights structural variations among human adenoviruses. SCIENCE ADVANCES 2021; 7:eabd9421. [PMID: 33627423 PMCID: PMC11425762 DOI: 10.1126/sciadv.abd9421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 05/24/2023]
Abstract
Enteric adenoviruses, one of the main causes of viral gastroenteritis in the world, must withstand the harsh conditions found in the gut. This requirement suggests that capsid stability must be different from that of other adenoviruses. We report the 4-Å-resolution structure of a human enteric adenovirus, HAdV-F41, and compare it with that of other adenoviruses with respiratory (HAdV-C5) and ocular (HAdV-D26) tropisms. While the overall structures of hexon, penton base, and internal minor coat proteins IIIa and VIII are conserved, we observe partially ordered elements reinforcing the vertex region, which suggests their role in enhancing the physicochemical capsid stability of HAdV-F41. Unexpectedly, we find an organization of the external minor coat protein IX different from all previously characterized human and nonhuman mastadenoviruses. Knowledge of the structure of enteric adenoviruses provides a starting point for the design of vectors suitable for oral delivery or intestinal targeting.
Collapse
Affiliation(s)
- Marta Pérez-Illana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Martínez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Mercedes Hernando-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Casandra Mangroo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Martha Brown
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
9
|
Kazemi M, Sorzano COS, Carazo JM, Georges AD, Abrishami V, Vargas J. ENRICH: A fast method to improve the quality of flexible macromolecular reconstructions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:92-100. [PMID: 33450244 DOI: 10.1016/j.pbiomolbio.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022]
Abstract
Cryo-electron microscopy using single particle analysis requires the computational averaging of thousands of projection images captured from identical macromolecules. However, macromolecules usually present some degree of flexibility showing different conformations. Computational approaches are then required to classify heterogeneous single particle images into homogeneous sets corresponding to different structural states. Nonetheless, sometimes the attainable resolution of reconstructions obtained from these smaller homogeneous sets is compromised because of reduced number of particles or lack of images at certain macromolecular orientations. In these situations, the current solution to improve map resolution is returning to the electron microscope and collect more data. In this work, we present a fast approach to partially overcome this limitation for heterogeneous data sets. Our method is based on deforming and then moving particles between different conformations using an optical flow approach. Particles are then merged into a unique conformation obtaining reconstructions with improved resolution, contrast and signal-to-noise ratio. We present experimental results that show clear improvements in the quality of obtained 3D maps, however, there are also limits to this approach, i.e., the method is restricted to small deformations and cannot determine local patterns of flexibility of small elements, such as secondary structures, which we discuss in the manuscript.
Collapse
Affiliation(s)
- M Kazemi
- Dep. of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - C O S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología-CSIC, C/ Darwin 3, 28049, Cantoblanco, Madrid, Spain
| | - J M Carazo
- Biocomputing Unit, Centro Nacional de Biotecnología-CSIC, C/ Darwin 3, 28049, Cantoblanco, Madrid, Spain
| | - A des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA; Dept. of Chemistry & Biochemistry, City College of New York, New York, NY, 10031, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - V Abrishami
- Laboratory of Structural Biology, Helsinki Institute of Life Science HiLIFE, Finland
| | - J Vargas
- Departamento de Optica, Universidad Complutense de Madrid, Avda. Computense s/n, Ciudad Universitaria, 28040, Madrid, Spain; Department of Anatomy and Cell Biology, McGill University, 3640, Rue University, Montréal, QC, H3A 0C7, Canada.
| |
Collapse
|
10
|
FlexAlign: An Accurate and Fast Algorithm for Movie Alignment in Cryo-Electron Microscopy. ELECTRONICS 2020. [DOI: 10.3390/electronics9061040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cryogenic Electron Microscopy (Cryo-EM) has been established as one of the key players in Structural Biology. It can reconstruct a 3D model of the sample at the near-atomic resolution, which led to a Method of the year award by Nature, and the Nobel Prize in 2017. With the growing number of facilities, faster microscopes, and new imaging techniques, new algorithms are needed to process the so-called movies data produced by the microscopes in real-time, while preserving a high resolution and maximum of additional information. In this article, we present a new algorithm used for movie alignment, called FlexAlign. FlexAlign is able to correctly compensate for the shift produced during the movie acquisition on-the-fly, using the current generation of hardware. The algorithm performs a global and elastic local registration of the movie frames using Cross-Correlation and B-spline interpolation for high precision. We show that our execution time is compatible with real-time correction and that we preserve the high-resolution information up to high frequency.
Collapse
|
11
|
Structural insights into influenza A virus ribonucleoproteins reveal a processive helical track as transcription mechanism. Nat Microbiol 2020; 5:727-734. [PMID: 32152587 DOI: 10.1038/s41564-020-0675-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/24/2020] [Indexed: 01/10/2023]
Abstract
The influenza virus genome consists of eight viral ribonucleoproteins (vRNPs), each consisting of a copy of the polymerase, one of the genomic RNA segments and multiple copies of the nucleoprotein arranged in a double helical conformation. vRNPs are macromolecular machines responsible for messenger RNA synthesis and genome replication, that is, the formation of progeny vRNPs. Here, we describe the structural basis of the transcription process. The mechanism, which we call the 'processive helical track', is based on the extreme flexibility of the helical part of the vRNP that permits a sliding movement between both antiparallel nucleoprotein-RNA strands, thereby allowing the polymerase to move over the genome while bound to both RNA ends. Accordingly, we demonstrate that blocking this movement leads to inhibition of vRNP transcriptional activity. This mechanism also reveals a critical role of the nucleoprotein in maintaining the double helical structure throughout the copying process to make the RNA template accessible to the polymerase.
Collapse
|
12
|
Cryo-EM structure of the Shigella type III needle complex. PLoS Pathog 2020; 16:e1008263. [PMID: 32092125 PMCID: PMC7058355 DOI: 10.1371/journal.ppat.1008263] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/05/2020] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
The Type III Secretion Systems (T3SS) needle complex is a conserved syringe-shaped protein translocation nanomachine with a mass of about 3.5 MDa essential for the survival and virulence of many Gram-negative bacterial pathogens. This system is composed of a membrane-embedded basal body and an extracellular needle that deliver effector proteins into host cells. High-resolution structures of the T3SS from different organisms and infection stages are needed to understand the underlying molecular mechanisms of effector translocation. Here, we present the cryo-electron microscopy structure of the isolated Shigella T3SS needle complex. The inner membrane (IM) region of the basal body adopts 24-fold rotational symmetry and forms a channel system that connects the bacterial periplasm with the export apparatus cage. The secretin oligomer adopts a heterogeneous architecture with 16- and 15-fold cyclic symmetry in the periplasmic N-terminal connector and C-terminal outer membrane ring, respectively. Two out of three IM subunits bind the secretin connector via a β-sheet augmentation. The cryo-EM map also reveals the helical architecture of the export apparatus core, the inner rod, the needle and their intervening interfaces. Diarrheal diseases evoke about 2.2. million dead people annually and are the second leading cause of postneonatal child mortality worldwide. Shigella causing dysentery utilizes the type 3-secretion system (T3SS) to inject virulence factors into the gut cells. The T3SS needle complex is a syringe-shaped nanomachine consisting of two membrane-embedded ring systems that sheath a central export apparatus and a hollow needle-like structure through which the virulence factors are transported. We present here the structure of the Shigella T3SS needle complex obtained by high-end electron microscopy. The outer membrane (OM) ring system adopts a mixed 15- and 16-fold cyclic symmetry and the near-atomic structure shows the connection of the inner membrane (IM) and OM rings. Conserved channels in the IM ring connect the bacterial periplasm with the central export apparatus. Similar to the Salmonella flagellar system, the export apparatus and its connected needle-like structure assemble in a helical manner. This study advances our understanding of the role of essential structural elements in the T3SS assembly and function.
Collapse
|
13
|
Maluenda D, Majtner T, Horvath P, Vilas JL, Jiménez-Moreno A, Mota J, Ramírez-Aportela E, Sánchez-García R, Conesa P, del Caño L, Rancel Y, Fonseca Y, Martínez M, Sharov G, García C, Strelak D, Melero R, Marabini R, Carazo JM, Sorzano COS. Flexible workflows for on-the-fly electron-microscopy single-particle image processing using Scipion. Acta Crystallogr D Struct Biol 2019; 75:882-894. [PMID: 31588920 PMCID: PMC6778851 DOI: 10.1107/s2059798319011860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/28/2019] [Indexed: 01/18/2023] Open
Abstract
Electron microscopy of macromolecular structures is an approach that is in increasing demand in the field of structural biology. The automation of image acquisition has greatly increased the potential throughput of electron microscopy. Here, the focus is on the possibilities in Scipion to implement flexible and robust image-processing workflows that allow the electron-microscope operator and the user to monitor the quality of image acquisition, assessing very simple acquisition measures or obtaining a first estimate of the initial volume, or the data resolution and heterogeneity, without any need for programming skills. These workflows can implement intelligent automatic decisions and they can warn the user of possible acquisition failures. These concepts are illustrated by analysis of the well known 2.2 Å resolution β-galactosidase data set.
Collapse
Affiliation(s)
- D. Maluenda
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - T. Majtner
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - P. Horvath
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - J. L. Vilas
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - A. Jiménez-Moreno
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - J. Mota
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | | | - R. Sánchez-García
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - P. Conesa
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - L. del Caño
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - Y. Rancel
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - Y. Fonseca
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - M. Martínez
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - G. Sharov
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, England
| | | | - D. Strelak
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - R. Melero
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - R. Marabini
- Universidad Autónoma de Madrid, Madrid, Spain
| | - J. M. Carazo
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| | - C. O. S. Sorzano
- National Center for Biotechnology (CSIC), 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
14
|
Macé K, Giudice E, Chat S, Gillet R. The structure of an elongation factor G-ribosome complex captured in the absence of inhibitors. Nucleic Acids Res 2019; 46:3211-3217. [PMID: 29408956 PMCID: PMC5887593 DOI: 10.1093/nar/gky081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/27/2018] [Indexed: 12/25/2022] Open
Abstract
During translation’s elongation cycle, elongation factor G (EF-G) promotes messenger and transfer RNA translocation through the ribosome. Until now, the structures reported for EF-G–ribosome complexes have been obtained by trapping EF-G in the ribosome. These results were based on use of non-hydrolyzable guanosine 5′-triphosphate (GTP) analogs, specific inhibitors or a mutated EF-G form. Here, we present the first cryo-electron microscopy structure of EF-G bound to ribosome in the absence of an inhibitor. The structure reveals a natural conformation of EF-G·GDP in the ribosome, with a previously unseen conformation of its third domain. These data show how EF-G must affect translocation, and suggest the molecular mechanism by which fusidic acid antibiotic prevents the release of EF-G after GTP hydrolysis.
Collapse
Affiliation(s)
- Kevin Macé
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000 Rennes, France
| | - Emmanuel Giudice
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000 Rennes, France
| | - Sophie Chat
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000 Rennes, France
| | - Reynald Gillet
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000 Rennes, France
| |
Collapse
|
15
|
Zivanov J, Nakane T, Scheres SHW. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCRJ 2019; 6:5-17. [PMID: 30713699 PMCID: PMC6327179 DOI: 10.1107/s205225251801463x] [Citation(s) in RCA: 542] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/16/2018] [Indexed: 05/22/2023]
Abstract
A new method to estimate the trajectories of particle motion and the amount of cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle analysis is presented. The motion within the sample is modelled through the use of Gaussian process regression. This allows a prior likelihood that favours spatially and temporally smooth motion to be associated with each hypothetical set of particle trajectories without imposing hard constraints. This formulation enables the a posteriori likelihood of a set of particle trajectories to be expressed as a product of that prior likelihood and an observation likelihood given by the data, and this a posteriori likelihood to then be maximized. Since the smoothness prior requires three parameters that describe the statistics of the observed motion, an efficient stochastic method to estimate these parameters is also proposed. Finally, a practical algorithm is proposed that estimates the average amount of cumulative radiation damage as a function of radiation dose and spatial frequency, and then fits relative B factors to that damage in a robust way. The method is evaluated on three publicly available data sets, and its usefulness is illustrated by comparison with state-of-the-art methods and previously published results. The new method has been implemented as Bayesian polishing in RELION-3, where it replaces the existing particle-polishing method, as it outperforms the latter in all tests conducted.
Collapse
Affiliation(s)
- Jasenko Zivanov
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England
| | - Takanori Nakane
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England
| | - Sjors H. W. Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England
| |
Collapse
|
16
|
Natesh R. Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution Structures of Druggable Targets in Preclinical Structure-Based Drug Design. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019. [PMCID: PMC7121590 DOI: 10.1007/978-3-030-05282-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) and three-dimensional (3D) image processing have gained importance in the last few years to obtain atomic structures of drug targets. Obtaining atomic-resolution 3D structure better than ~2.5 Å is a standard approach in pharma companies to design and optimize therapeutic compounds against drug targets like proteins. Protein crystallography is the main technique in solving the structures of drug targets at atomic resolution. However, this technique requires protein crystals which in turn is a major bottleneck. It was not possible to obtain the structure of proteins better than 2.5 Å resolution by any other methods apart from protein crystallography until 2015. Recent advances in single-particle cryo-EM and 3D image processing have led to a resolution revolution in the field of structural biology that has led to high-resolution protein structures, thus breaking the cryo-EM resolution barriers to facilitate drug discovery. There are 24 structures solved by single-particle cryo-EM with resolution 2.5 Å or better in the EMDataBank (EMDB) till date. Among these, five cryo-EM 3D reconstructions of proteins in the EMDB have their associated coordinates deposited in Protein Data Bank (PDB), with bound inhibitor/ ligand. Thus, for the first time, single-particle cryo-EM was included in the structure-based drug design (SBDD) pipeline for solving protein structures independently or where crystallography has failed to crystallize the protein. Further, this technique can be complementary and supplementary to protein crystallography field in solving 3D structures. Thus, single-particle cryo-EM can become a standard approach in pharmaceutical industry in the design, validation, and optimization of therapeutic compounds targeting therapeutically important protein molecules during preclinical drug discovery research. The present chapter will describe briefly the history and the principles of single-particle cryo-EM and 3D image processing to obtain atomic-resolution structure of proteins and their complex with their drug targets/ligands.
Collapse
|
17
|
Gómez-Blanco J, de la Rosa-Trevín JM, Marabini R, Del Cano L, Jiménez A, Martínez M, Melero R, Majtner T, Maluenda D, Mota J, Rancel Y, Ramírez-Aportela E, Vilas JL, Carroni M, Fleischmann S, Lindahl E, Ashton AW, Basham M, Clare DK, Savage K, Siebert CA, Sharov GG, Sorzano COS, Conesa P, Carazo JM. Using Scipion for stream image processing at Cryo-EM facilities. J Struct Biol 2018; 204:457-463. [PMID: 30296492 PMCID: PMC6303188 DOI: 10.1016/j.jsb.2018.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Three dimensional electron microscopy is becoming a very data-intensive field in which vast amounts of experimental images are acquired at high speed. To manage such large-scale projects, we had previously developed a modular workflow system called Scipion (de la Rosa-Trevín et al., 2016). We present here a major extension of Scipion that allows processing of EM images while the data is being acquired. This approach helps to detect problems at early stages, saves computing time and provides users with a detailed evaluation of the data quality before the acquisition is finished. At present, Scipion has been deployed and is in production mode in seven Cryo-EM facilities throughout the world.
Collapse
Affiliation(s)
- J Gómez-Blanco
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - J M de la Rosa-Trevín
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - R Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| | - L Del Cano
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - A Jiménez
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - M Martínez
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - R Melero
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - T Majtner
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - D Maluenda
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - J Mota
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - Y Rancel
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - E Ramírez-Aportela
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - J L Vilas
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - M Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - S Fleischmann
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - E Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden; Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - A W Ashton
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - M Basham
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - D K Clare
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - K Savage
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - C A Siebert
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - G G Sharov
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 OQH, United Kingdom
| | - C O S Sorzano
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - P Conesa
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - J M Carazo
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
18
|
Advances in image processing for single-particle analysis by electron cryomicroscopy and challenges ahead. Curr Opin Struct Biol 2018; 52:127-145. [PMID: 30509756 DOI: 10.1016/j.sbi.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/26/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022]
Abstract
Electron cryomicroscopy (cryoEM) is essential for the study and functional understanding of non-crystalline macromolecules such as proteins. These molecules cannot be imaged using X-ray crystallography or other popular methods. CryoEM has been successfully used to visualize macromolecular complexes such as ribosomes, viruses, and ion channels. Determination of structural models of these at various conformational states leads to insight on how these molecules function. Recent advances in imaging technology have given cryoEM a scientific rebirth. As a result of these technological advances image processing and analysis have yielded molecular structures at atomic resolution. Nevertheless there continue to be challenges in image processing, and in this article we will touch on the most essential in order to derive an accurate three-dimensional model from noisy projection images. Traditional approaches, such as k-means clustering for class averaging, will be provided as background. We will then highlight new approaches for each image processing subproblem, including a 3D reconstruction method for asymmetric molecules using just two projection images and deep learning algorithms for automated particle picking.
Collapse
|
19
|
Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 2018; 7:42166. [PMID: 30412051 PMCID: PMC6250425 DOI: 10.7554/elife.42166] [Citation(s) in RCA: 3249] [Impact Index Per Article: 541.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022] Open
Abstract
Here, we describe the third major release of RELION. CPU-based vector acceleration has been added in addition to GPU support, which provides flexibility in use of resources and avoids memory limitations. Reference-free autopicking with Laplacian-of-Gaussian filtering and execution of jobs from python allows non-interactive processing during acquisition, including 2D-classification, de novo model generation and 3D-classification. Per-particle refinement of CTF parameters and correction of estimated beam tilt provides higher resolution reconstructions when particles are at different heights in the ice, and/or coma-free alignment has not been optimal. Ewald sphere curvature correction improves resolution for large particles. We illustrate these developments with publicly available data sets: together with a Bayesian approach to beam-induced motion correction it leads to resolution improvements of 0.2–0.7 Å compared to previous RELION versions.
Collapse
Affiliation(s)
- Jasenko Zivanov
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Takanori Nakane
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Björn O Forsberg
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Dari Kimanius
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Wim Jh Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cryo-Electron Microscopy Service Platform, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
20
|
Marabini R, Kazemi M, Sorzano COS, Carazo JM. Map challenge: Analysis using a pair comparison method based on Fourier shell correlation. J Struct Biol 2018; 204:527-542. [PMID: 30273658 DOI: 10.1016/j.jsb.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022]
Abstract
This document presents the analysis performed over the Map Challenge dataset using a new algorithm which we refer to as Pair Comparison Method. The new algorithm, which is described in detail in the text, is able to sort reconstructions based on a figure of merit and assigns a level of significance to the sorting. That is, it shows how likely the sorting is due to chance or if it reflects real differences.
Collapse
Affiliation(s)
- R Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| | - M Kazemi
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, The University of Melbourne, VIC 3010, Australia
| | - C O S Sorzano
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - J M Carazo
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
21
|
The first single particle analysis Map Challenge: A summary of the assessments. J Struct Biol 2018; 204:291-300. [PMID: 30114512 DOI: 10.1016/j.jsb.2018.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/03/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022]
Abstract
The recent successes of cryo-electron microscopy fostered great expectation of solving many new and previously recalcitrant biomolecular structures. However, it also brings with it the danger of compromising the validity of the outcomes if not done properly. The Map Challenge is a first step in assessing the state of the art and to shape future developments in data processing. The organizers presented seven cases for single particle reconstruction, and 27 members of the community responded with 66 submissions. Seven groups analyzed these submissions, resulting in several assessment reports, summarized here. We devised a range of analyses to evaluate the submitted maps, including visual impressions, Fourier shell correlation, pairwise similarity and interpretation through modeling. Unfortunately, we did not find strong trends. We ascribe this to the complexity of the challenge, dealing with multiple cases, software packages and processing approaches. This puts the user in the spotlight, where his/her choices becomes the determinant of map quality. The future focus should therefore be on promulgating best practices and encapsulating these in the software. Such practices include adherence to validation principles, most notably the processing of independent sets, proper resolution-limited alignment, appropriate masking and map sharpening. We consider the Map Challenge to be a highly valuable exercise that should be repeated frequently or on an ongoing basis.
Collapse
|
22
|
Pellegrino S, Demeshkina N, Mancera-Martinez E, Melnikov S, Simonetti A, Myasnikov A, Yusupov M, Yusupova G, Hashem Y. Structural Insights into the Role of Diphthamide on Elongation Factor 2 in mRNA Reading-Frame Maintenance. J Mol Biol 2018; 430:2677-2687. [PMID: 29886014 DOI: 10.1016/j.jmb.2018.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 01/27/2023]
Abstract
One of the most critical steps of protein biosynthesis is the coupled movement of mRNA, which encodes genetic information, with tRNAs on the ribosome. In eukaryotes, this process is catalyzed by a conserved G-protein, the elongation factor 2 (eEF2), which carries a unique post-translational modification, called diphthamide, found in all eukaryotic species. Here we present near-atomic resolution cryo-electron microscopy structures of yeast 80S ribosome complexes containing mRNA, tRNA and eEF2 trapped in different GTP-hydrolysis states which provide further structural insights into the role of diphthamide in the mechanism of translation fidelity in eukaryotes.
Collapse
Affiliation(s)
- Simone Pellegrino
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS UMR710, INSERM U964, University of Strasbourg, Strasbourg 67000, France
| | - Natalia Demeshkina
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS UMR710, INSERM U964, University of Strasbourg, Strasbourg 67000, France
| | - Eder Mancera-Martinez
- Architecture and Reactivity of RNA, University of Strasbourg, Institute of Molecular and Cellular Biology of the CNRS UPR9002, Strasbourg 67084, France
| | - Sergey Melnikov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS UMR710, INSERM U964, University of Strasbourg, Strasbourg 67000, France
| | - Angelita Simonetti
- Architecture and Reactivity of RNA, University of Strasbourg, Institute of Molecular and Cellular Biology of the CNRS UPR9002, Strasbourg 67084, France
| | - Alexander Myasnikov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS UMR710, INSERM U964, University of Strasbourg, Strasbourg 67000, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS UMR710, INSERM U964, University of Strasbourg, Strasbourg 67000, France; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS UMR710, INSERM U964, University of Strasbourg, Strasbourg 67000, France.
| | - Yaser Hashem
- ARNA, U1212 Université de Bordeaux, Institut Européen de Chimie et de Biologie (IECB) Inserm, Pessac 33600, France.
| |
Collapse
|
23
|
Bartesaghi A, Aguerrebere C, Falconieri V, Banerjee S, Earl LA, Zhu X, Grigorieff N, Milne JLS, Sapiro G, Wu X, Subramaniam S. Atomic Resolution Cryo-EM Structure of β-Galactosidase. Structure 2018; 26:848-856.e3. [PMID: 29754826 DOI: 10.1016/j.str.2018.04.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/02/2018] [Accepted: 04/05/2018] [Indexed: 01/30/2023]
Abstract
The advent of direct electron detectors has enabled the routine use of single-particle cryo-electron microscopy (EM) approaches to determine structures of a variety of protein complexes at near-atomic resolution. Here, we report the development of methods to account for local variations in defocus and beam-induced drift, and the implementation of a data-driven dose compensation scheme that significantly improves the extraction of high-resolution information recorded during exposure of the specimen to the electron beam. These advances enable determination of a cryo-EM density map for β-galactosidase bound to the inhibitor phenylethyl β-D-thiogalactopyranoside where the ordered regions are resolved at a level of detail seen in X-ray maps at ∼ 1.5 Å resolution. Using this density map in conjunction with constrained molecular dynamics simulations provides a measure of the local flexibility of the non-covalently bound inhibitor and offers further opportunities for structure-guided inhibitor design.
Collapse
Affiliation(s)
- Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Cecilia Aguerrebere
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Veronica Falconieri
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Soojay Banerjee
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xing Zhu
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jacqueline L S Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Guillermo Sapiro
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Xiongwu Wu
- Laboratory of Biophysical Chemistry, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Abstract
Structural studies of biocomplexes using single-particle cryo-electron microscopy (cryo-EM) is now a well-established technique in structural biology and has become competitive with X-ray crystallography. The latest advances in EM enable us to determine structures of protein complexes at 3-5 Å resolution for an extremely broad range of sizes from ~200 kDa up to hundreds of megadaltons (Bartesaghi et al., Science 348(6239):1147-1151, 2051; Bai et al., Nature 525(7568):212-217, 2015; Vinothkumar et al., Nature 515(7525):80-84, 2014; Grigorieff and Harrison, Curr Opin Struct Biol 21(2):265-273, 2011). The majority of biocomplexes comprise a number of different components and are not amenable to crystallisation. Secretion systems are typical examples of such multi-protein complexes, and structural studies of them are extremely challenging. The only feasible approach to revealing their spatial organisation and functional modification is cryo-EM. The development of systems for digital registration of images and algorithms for the fast and efficient processing of recorded images and subsequent analysis facilitated the determination of structures at near-atomic resolution. In this review we will describe sample preparation for cryo-EM, how data are collected by new detectors, and the logistics of image analysis through the basic steps required for reconstructions of both small and large biological complexes and their refinement to nearly atomic resolution. The processing workflow is illustrated using examples of EM analysis of a Type IV Secretion System.
Collapse
|
25
|
Fernandez JJ, Li S, Bharat TAM, Agard DA. Cryo-tomography tilt-series alignment with consideration of the beam-induced sample motion. J Struct Biol 2018; 202:200-209. [PMID: 29410148 PMCID: PMC5949096 DOI: 10.1016/j.jsb.2018.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/18/2022]
Abstract
Recent evidence suggests that the beam-induced motion of the sample during tilt-series acquisition is a major resolution-limiting factor in electron cryo-tomography (cryoET). It causes suboptimal tilt-series alignment and thus deterioration of the reconstruction quality. Here we present a novel approach to tilt-series alignment and tomographic reconstruction that considers the beam-induced sample motion through the tilt-series. It extends the standard fiducial-based alignment approach in cryoET by introducing quadratic polynomials to model the sample motion. The model can be used during reconstruction to yield a motion-compensated tomogram. We evaluated our method on various datasets with different sample sizes. The results demonstrate that our method could be a useful tool to improve the quality of tomograms and the resolution in cryoET.
Collapse
Affiliation(s)
| | - Sam Li
- Dept. Biochemistry and Biophysics, University of California, San Francisco, USA
| | - Tanmay A M Bharat
- MRC Laboratory of Molecular Biology, Francis Crick Avenue Cambridge CB2 0QH, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David A Agard
- Dept. Biochemistry and Biophysics, University of California, San Francisco, USA
| |
Collapse
|
26
|
Mata CP, Luque D, Gómez-Blanco J, Rodríguez JM, González JM, Suzuki N, Ghabrial SA, Carrascosa JL, Trus BL, Castón JR. Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses. PLoS Pathog 2017; 13:e1006755. [PMID: 29220409 PMCID: PMC5738138 DOI: 10.1371/journal.ppat.1006755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/20/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
Unlike their counterparts in bacterial and higher eukaryotic hosts, most fungal viruses are transmitted intracellularly and lack an extracellular phase. Here we determined the cryo-EM structure at 3.7 Å resolution of Rosellinia necatrix quadrivirus 1 (RnQV1), a fungal double-stranded (ds)RNA virus. RnQV1, the type species of the family Quadriviridae, has a multipartite genome consisting of four monocistronic segments. Whereas most dsRNA virus capsids are based on dimers of a single protein, the ~450-Å-diameter, T = 1 RnQV1 capsid is built of P2 and P4 protein heterodimers, each with more than 1000 residues. Despite a lack of sequence similarity between the two proteins, they have a similar α-helical domain, the structural signature shared with the lineage of the dsRNA bluetongue virus-like viruses. Domain insertions in P2 and P4 preferential sites provide additional functions at the capsid outer surface, probably related to enzyme activity. The P2 insertion has a fold similar to that of gelsolin and profilin, two actin-binding proteins with a function in cytoskeleton metabolism, whereas the P4 insertion suggests protease activity involved in cleavage of the P2 383-residue C-terminal region, absent in the mature viral particle. Our results indicate that the intimate virus-fungus partnership has altered the capsid genome-protective and/or receptor-binding functions. Fungal virus evolution has tended to allocate enzyme activities to the virus capsid outer surface. Most fungal RNA viruses are transmitted by cytoplasmic interchange without leaving the host. We report the cryo-electron microscopy structure, at near-atomic resolution, of the double-stranded RNA Rosellinia necatrix quadrivirus 1 (RnQV1); this virus infects the fungus Rosellinia necatrix, a pathogenic ascomycete to a wide range of plants. At difference most dsRNA viruses, whose capsid is made of protein homodimers, RnQV1 is based on a single-shelled lattice built of 60 P2-P4 heterodimers. Despite a lack of sequence similarity, P2 and P4 have a similar α-helical domain, a structural signature shared with the dsRNA virus lineage. In addition to organizing the viral genome and replicative machinery, P2 and P4 have acquired new functions by inserting complex domains in preferential insertion sites. Whereas the P2 insertion domain has a fold like that of actin-binding proteins, the structure of the P4 insertion domain indicates proteolytic activity. Understanding the structure of a fungal virus capsid with enzyme activities could allow its development as nanoreactors for biotechnological application.
Collapse
Affiliation(s)
- Carlos P. Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | - Daniel Luque
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
- Centro Nacional de Microbiología/ISCIII, Majadahonda, Madrid, Spain
| | - Josué Gómez-Blanco
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | | | - José M. González
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | | | - Said A. Ghabrial
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - José L. Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | - Benes L. Trus
- Imaging Sciences Laboratory, CIT, NIH, Bethesda, MD, United States of America
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
27
|
Brito Querido J, Mancera-Martínez E, Vicens Q, Bochler A, Chicher J, Simonetti A, Hashem Y. The cryo-EM Structure of a Novel 40S Kinetoplastid-Specific Ribosomal Protein. Structure 2017; 25:1785-1794.e3. [DOI: 10.1016/j.str.2017.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/20/2017] [Accepted: 09/20/2017] [Indexed: 12/01/2022]
|
28
|
Conesa Mingo P, Gutierrez J, Quintana A, de la Rosa Trevín JM, Zaldívar-Peraza A, Cuenca Alba J, Kazemi M, Vargas J, Del Cano L, Segura J, Sorzano COS, Carazo JM. Scipion web tools: Easy to use cryo-EM image processing over the web. Protein Sci 2017; 27:269-275. [PMID: 28971542 DOI: 10.1002/pro.3315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 11/08/2022]
Abstract
Macromolecular structural determination by Electron Microscopy under cryogenic conditions is revolutionizing the field of structural biology, interesting a large community of potential users. Still, the path from raw images to density maps is complex, and sophisticated image processing suites are required in this process, often demanding the installation and understanding of different software packages. Here, we present Scipion Web Tools, a web-based set of tools/workflows derived from the Scipion image processing framework, specially tailored to nonexpert users in need of very precise answers at several key stages of the structural elucidation process.
Collapse
Affiliation(s)
- Pablo Conesa Mingo
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - José Gutierrez
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Adrián Quintana
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | | | | | - Jesús Cuenca Alba
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Mohsen Kazemi
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Javier Vargas
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Laura Del Cano
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Joan Segura
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | | | - Jose María Carazo
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
29
|
Vemu A, Atherton J, Spector JO, Moores CA, Roll-Mecak A. Tubulin isoform composition tunes microtubule dynamics. Mol Biol Cell 2017; 28:3564-3572. [PMID: 29021343 PMCID: PMC5706985 DOI: 10.1091/mbc.e17-02-0124] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022] Open
Abstract
We report the cryo-EM structure and dynamic parameters for unmodified α1B/βI+βIVb microtubules. These microtubules display markedly different dynamics compared to heterogeneous brain microtubules, and their dynamic parameters can be proportionally tuned by the addition of a recombinant neuronal tubulin isoform with different dynamic properties. Microtubules polymerize and depolymerize stochastically, a behavior essential for cell division, motility, and differentiation. While many studies advanced our understanding of how microtubule-associated proteins tune microtubule dynamics in trans, we have yet to understand how tubulin genetic diversity regulates microtubule functions. The majority of in vitro dynamics studies are performed with tubulin purified from brain tissue. This preparation is not representative of tubulin found in many cell types. Here we report the 4.2-Å cryo-electron microscopy (cryo-EM) structure and in vitro dynamics parameters of α1B/βI+βIVb microtubules assembled from tubulin purified from a human embryonic kidney cell line with isoform composition characteristic of fibroblasts and many immortalized cell lines. We find that these microtubules grow faster and transition to depolymerization less frequently compared with brain microtubules. Cryo-EM reveals that the dynamic ends of α1B/βI+βIVb microtubules are less tapered and that these tubulin heterodimers display lower curvatures. Interestingly, analysis of EB1 distributions at dynamic ends suggests no differences in GTP cap sizes. Last, we show that the addition of recombinant α1A/βIII tubulin, a neuronal isotype overexpressed in many tumors, proportionally tunes the dynamics of α1B/βI+βIVb microtubules. Our study is an important step toward understanding how tubulin isoform composition tunes microtubule dynamics.
Collapse
Affiliation(s)
- Annapurna Vemu
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Lung and Blood Institute, Bethesda, MD 20892
| | - Joseph Atherton
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Jeffrey O Spector
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Lung and Blood Institute, Bethesda, MD 20892
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Lung and Blood Institute, Bethesda, MD 20892 .,Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892
| |
Collapse
|
30
|
Bednar J, Garcia-Saez I, Boopathi R, Cutter AR, Papai G, Reymer A, Syed SH, Lone IN, Tonchev O, Crucifix C, Menoni H, Papin C, Skoufias DA, Kurumizaka H, Lavery R, Hamiche A, Hayes JJ, Schultz P, Angelov D, Petosa C, Dimitrov S. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1. Mol Cell 2017; 66:384-397.e8. [PMID: 28475873 DOI: 10.1016/j.molcel.2017.04.012] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/08/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
Linker histones associate with nucleosomes to promote the formation of higher-order chromatin structure, but the underlying molecular details are unclear. We investigated the structure of a 197 bp nucleosome bearing symmetric 25 bp linker DNA arms in complex with vertebrate linker histone H1. We determined electron cryo-microscopy (cryo-EM) and crystal structures of unbound and H1-bound nucleosomes and validated these structures by site-directed protein cross-linking and hydroxyl radical footprinting experiments. Histone H1 shifts the conformational landscape of the nucleosome by drawing the two linkers together and reducing their flexibility. The H1 C-terminal domain (CTD) localizes primarily to a single linker, while the H1 globular domain contacts the nucleosome dyad and both linkers, associating more closely with the CTD-distal linker. These findings reveal that H1 imparts a strong degree of asymmetry to the nucleosome, which is likely to influence the assembly and architecture of higher-order structures.
Collapse
Affiliation(s)
- Jan Bednar
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Isabel Garcia-Saez
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Ramachandran Boopathi
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Amber R Cutter
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | - Gabor Papai
- Department of Integrated Structural Biology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Anna Reymer
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 69367 Lyon, France
| | - Sajad H Syed
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Imtiaz Nisar Lone
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Ognyan Tonchev
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Corinne Crucifix
- Department of Integrated Structural Biology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Hervé Menoni
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Christophe Papin
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Dimitrios A Skoufias
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Richard Lavery
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 69367 Lyon, France
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France.
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA.
| | - Patrick Schultz
- Department of Integrated Structural Biology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France.
| | - Dimitar Angelov
- Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
| | - Carlo Petosa
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France.
| | - Stefan Dimitrov
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
31
|
von Loeffelholz O, Natchiar SK, Djabeur N, Myasnikov AG, Kratzat H, Ménétret JF, Hazemann I, Klaholz BP. Focused classification and refinement in high-resolution cryo-EM structural analysis of ribosome complexes. Curr Opin Struct Biol 2017; 46:140-148. [PMID: 28850874 DOI: 10.1016/j.sbi.2017.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/23/2017] [Accepted: 07/27/2017] [Indexed: 11/17/2022]
Abstract
Cryo electron microscopy (cryo-EM) historically has had a strong impact on the structural and mechanistic analysis of protein synthesis by the prokaryotic and eukaryotic ribosomes. Vice versa, studying ribosomes has helped moving forwards many methodological aspects in single particle cryo-EM, at the level of automated data collection and image processing including advanced techniques for particle sorting to address structural and compositional heterogeneity. Here we review some of the latest ribosome structures, where cryo-EM allowed gaining unprecedented insights based on 3D structure sorting with focused classification and refinement methods helping to reach local resolution levels better than 3Å. Such high-resolution features now enable the analysis of drug interactions with RNA and protein side-chains including even the visualization of chemical modifications of the ribosomal RNA. These advances represent a major breakthrough in structural biology and show the strong potential of cryo-EM beyond the ribosome field including for structure-based drug design.
Collapse
Affiliation(s)
- Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - S Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Nadia Djabeur
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Alexander G Myasnikov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Hanna Kratzat
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Jean-François Ménétret
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France. mailto:
| |
Collapse
|
32
|
Rivera-Calzada A, Pal M, Muñoz-Hernández H, Luque-Ortega JR, Gil-Carton D, Degliesposti G, Skehel JM, Prodromou C, Pearl LH, Llorca O. The Structure of the R2TP Complex Defines a Platform for Recruiting Diverse Client Proteins to the HSP90 Molecular Chaperone System. Structure 2017. [PMID: 28648606 PMCID: PMC5501727 DOI: 10.1016/j.str.2017.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The R2TP complex, comprising the Rvb1p-Rvb2p AAA-ATPases, Tah1p, and Pih1p in yeast, is a specialized Hsp90 co-chaperone required for the assembly and maturation of multi-subunit complexes. These include the small nucleolar ribonucleoproteins, RNA polymerase II, and complexes containing phosphatidylinositol-3-kinase-like kinases. The structure and stoichiometry of yeast R2TP and how it couples to Hsp90 are currently unknown. Here, we determine the 3D organization of yeast R2TP using sedimentation velocity analysis and cryo-electron microscopy. The 359-kDa complex comprises one Rvb1p/Rvb2p hetero-hexamer with domains II (DIIs) forming an open basket that accommodates a single copy of Tah1p-Pih1p. Tah1p-Pih1p binding to multiple DII domains regulates Rvb1p/Rvb2p ATPase activity. Using domain dissection and cross-linking mass spectrometry, we identified a unique region of Pih1p that is essential for interaction with Rvb1p/Rvb2p. These data provide a structural basis for understanding how R2TP couples an Hsp90 dimer to a diverse set of client proteins and complexes. Rvb1p-Rvb2p forms a hetero-hexamer with DII domains recruiting a single Tah1p-Pih1p Residues 230–250 in Pih1p are essential to bind Rvb1p-Rvb2p 3D structure of yeast R2TP couples an Hsp90 dimer to client proteins Tah1p-Pih1p binding to flexible DII domains stimulates Rvb1p-Rvb2p ATPase activity
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Mohinder Pal
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Hugo Muñoz-Hernández
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Juan R Luque-Ortega
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - David Gil-Carton
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | | | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Chrisostomos Prodromou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Oscar Llorca
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
33
|
Torreira E, Louro JA, Pazos I, González-Polo N, Gil-Carton D, Duran AG, Tosi S, Gallego O, Calvo O, Fernández-Tornero C. The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription. eLife 2017; 6. [PMID: 28262097 PMCID: PMC5362265 DOI: 10.7554/elife.20832] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 03/06/2017] [Indexed: 12/31/2022] Open
Abstract
Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I–Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differential Pol I complexes assembly and subsequent promoter association. DOI:http://dx.doi.org/10.7554/eLife.20832.001
Collapse
Affiliation(s)
- Eva Torreira
- IPSBB Unit, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | - Irene Pazos
- Institute for Research in Biomedicine, Barcelona, Spain.,The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Noelia González-Polo
- Instituto de Biología Funcional y Genómica, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - David Gil-Carton
- Structural Biology Unit, Cooperative Center for Research in Biosciences CIC bioGUNE, Derio, Spain
| | - Ana Garcia Duran
- Institute for Research in Biomedicine, Barcelona, Spain.,The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sébastien Tosi
- Institute for Research in Biomedicine, Barcelona, Spain.,The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oriol Gallego
- Institute for Research in Biomedicine, Barcelona, Spain.,The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica, CSIC-Universidad de Salamanca, Salamanca, Spain
| | | |
Collapse
|
34
|
Robust image alignment for cryogenic transmission electron microscopy. J Struct Biol 2016; 197:279-293. [PMID: 28038834 DOI: 10.1016/j.jsb.2016.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 11/23/2022]
Abstract
Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro.
Collapse
|
35
|
Xu J, Zhao L, Xu Y, Zhao W, Sung P, Wang HW. Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nat Struct Mol Biol 2016; 24:40-46. [PMID: 27941862 DOI: 10.1038/nsmb.3336] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/07/2016] [Indexed: 01/16/2023]
Abstract
The central step in eukaryotic homologous recombination (HR) is ATP-dependent DNA-strand exchange mediated by the Rad51 recombinase. In this process, Rad51 assembles on single-stranded DNA (ssDNA) and generates a helical filament that is able to search for and invade homologous double-stranded DNA (dsDNA), thus leading to strand separation and formation of new base pairs between the initiating ssDNA and the complementary strand within the duplex. Here, we used cryo-EM to solve the structures of human RAD51 in complex with DNA molecules, in presynaptic and postsynaptic states, at near-atomic resolution. Our structures reveal both conserved and distinct structural features of the human RAD51-DNA complexes compared with their prokaryotic counterpart. Notably, we also captured the structure of an arrested synaptic complex. Our results provide new insight into the molecular mechanisms of the DNA homology search and strand-exchange processes.
Collapse
Affiliation(s)
- Jingfei Xu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lingyun Zhao
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanyuan Xu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
36
|
Ruiz J, Boehringer R, Grogg M, Raya J, Schirer A, Crucifix C, Hellwig P, Schultz P, Torbeev V. Covalent Tethering and Residues with Bulky Hydrophobic Side Chains Enable Self-Assembly of Distinct Amyloid Structures. Chembiochem 2016; 17:2274-2285. [PMID: 27717158 DOI: 10.1002/cbic.201600440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/10/2022]
Abstract
Polymorphism is a common property of amyloid fibers that complicates their detailed structural and functional studies. Here we report experiments illustrating the chemical principles that enable the formation of amyloid polymorphs with distinct stoichiometric composition. Using appropriate covalent tethering we programmed self-assembly of a model peptide corresponding to the [20-41] fragment of human β2-microglobulin into fibers with either trimeric or dimeric amyloid cores. Using a set of biophysical and biochemical methods we demonstrated their distinct structural, morphological, and templating properties. Furthermore, we showed that supramolecular approaches in which the peptide is modified with bulky substituents can also be applied to modulate the formation of different fiber polymorphs. Such strategies, when applied to disease-related peptides and proteins, will greatly help in the evaluation of the biological properties of structurally distinct amyloids.
Collapse
Affiliation(s)
- Jérémy Ruiz
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Régis Boehringer
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Marcel Grogg
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Jésus Raya
- Membrane Biophysics and NMR, Institute of Chemistry, University of Strasbourg, CNRS-, UMR 7177, 4 rue Blaise Pascal, 67008, Strasbourg, France
| | - Alicia Schirer
- Laboratory of Bioelectrochemistry and Spectroscopy, University of Strasbourg, CNRS-, UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Corinne Crucifix
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM-U964, University of Strasbourg, CNRS-, UMR 7104, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Petra Hellwig
- Laboratory of Bioelectrochemistry and Spectroscopy, University of Strasbourg, CNRS-, UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Patrick Schultz
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM-U964, University of Strasbourg, CNRS-, UMR 7104, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Vladimir Torbeev
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| |
Collapse
|
37
|
Liu Z, Gutierrez-Vargas C, Wei J, Grassucci RA, Sun M, Espina N, Madison-Antenucci S, Tong L, Frank J. Determination of the ribosome structure to a resolution of 2.5 Å by single-particle cryo-EM. Protein Sci 2016; 26:82-92. [PMID: 27750394 DOI: 10.1002/pro.3068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/06/2022]
Abstract
With the advance of new instruments and algorithms, and the accumulation of experience over decades, single-particle cryo-EM has become a pivotal part of structural biology. Recently, we determined the structure of a eukaryotic ribosome at 2.5 Å for the large subunit. The ribosome was derived from Trypanosoma cruzi, the protozoan pathogen of Chagas disease. The high-resolution density map allowed us to discern a large number of unprecedented details including rRNA modifications, water molecules, and ions such as Mg2+ and Zn2+ . In this paper, we focus on the procedures for data collection, image processing, and modeling, with particular emphasis on factors that contributed to the attainment of high resolution. The methods described here are readily applicable to other macromolecules for high-resolution reconstruction by single-particle cryo-EM.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, 10032
| | - Cristina Gutierrez-Vargas
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032
| | - Jia Wei
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032
| | - Robert A Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, 10032
| | - Ming Sun
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032
| | - Noel Espina
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, 12201
| | - Susan Madison-Antenucci
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, 12201
| | - Liang Tong
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, 10032.,Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032.,Department of Biological Sciences, Columbia University, New York, New York, 10027
| |
Collapse
|
38
|
Pilsl M, Crucifix C, Papai G, Krupp F, Steinbauer R, Griesenbeck J, Milkereit P, Tschochner H, Schultz P. Structure of the initiation-competent RNA polymerase I and its implication for transcription. Nat Commun 2016; 7:12126. [PMID: 27418187 PMCID: PMC4947174 DOI: 10.1038/ncomms12126] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/02/2016] [Indexed: 01/12/2023] Open
Abstract
Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation. Eukaryotic RNA polymerase I (Pol I) is responsible for the transcription of rRNA genes. Here the authors determine the cryo-EM structure of the Pol I-Rrn3 complex, providing insight into how Rrn3 stabilizes the monomeric initiation competent Pol I to drive pre-initiation complex formation.
Collapse
Affiliation(s)
- Michael Pilsl
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Corinne Crucifix
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404 Illkirch, France
| | - Gabor Papai
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404 Illkirch, France
| | - Ferdinand Krupp
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404 Illkirch, France
| | - Robert Steinbauer
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Philipp Milkereit
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Herbert Tschochner
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Patrick Schultz
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404 Illkirch, France
| |
Collapse
|
39
|
de la Rosa-Trevín J, Quintana A, del Cano L, Zaldívar A, Foche I, Gutiérrez J, Gómez-Blanco J, Burguet-Castell J, Cuenca-Alba J, Abrishami V, Vargas J, Otón J, Sharov G, Vilas J, Navas J, Conesa P, Kazemi M, Marabini R, Sorzano C, Carazo J. Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy. J Struct Biol 2016; 195:93-9. [DOI: 10.1016/j.jsb.2016.04.010] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
|
40
|
Simonetti A, Brito Querido J, Myasnikov AG, Mancera-Martinez E, Renaud A, Kuhn L, Hashem Y. eIF3 Peripheral Subunits Rearrangement after mRNA Binding and Start-Codon Recognition. Mol Cell 2016; 63:206-217. [PMID: 27373335 DOI: 10.1016/j.molcel.2016.05.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/07/2016] [Accepted: 05/23/2016] [Indexed: 11/30/2022]
Abstract
mRNA translation initiation in eukaryotes requires the cooperation of a dozen eukaryotic initiation factors (eIFs) forming several complexes, which leads to mRNA attachment to the small ribosomal 40S subunit, mRNA scanning for start codon, and accommodation of initiator tRNA at the 40S P site. eIF3, composed of 13 subunits, 8 core (a, c, e, f, h, l, k, and m) and 5 peripheral (b, d, g, i, and j), plays a central role during this process. Here we report a cryo-electron microscopy structure of a mammalian 48S initiation complex at 5.8 Å resolution. It shows the relocation of subunits eIF3i and eIF3g to the 40S intersubunit face on the GTPase binding site, at a late stage in initiation. On the basis of a previous study, we demonstrate the relocation of eIF3b to the 40S intersubunit face, binding below the eIF2-Met-tRNAi(Met) ternary complex upon mRNA attachment. Our analysis reveals the deep rearrangement of eIF3 and unravels the molecular mechanism underlying eIF3 function in mRNA scanning and timing of ribosomal subunit joining.
Collapse
Affiliation(s)
- Angelita Simonetti
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France.
| | - Jailson Brito Querido
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France
| | | | - Eder Mancera-Martinez
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France
| | - Adeline Renaud
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France
| | - Lauriane Kuhn
- CNRS, Proteomic Platform Strasbourg - Esplanade, 67084 Strasbourg, France
| | - Yaser Hashem
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
41
|
Structures of Human Peroxiredoxin 3 Suggest Self-Chaperoning Assembly that Maintains Catalytic State. Structure 2016; 24:1120-9. [PMID: 27238969 DOI: 10.1016/j.str.2016.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/14/2016] [Accepted: 04/09/2016] [Indexed: 01/05/2023]
Abstract
Peroxiredoxins are antioxidant proteins primarily responsible for detoxification of hydroperoxides in cells. On exposure to various cellular stresses, peroxiredoxins can acquire chaperone activity, manifested as quaternary reorganization into a high molecular weight (HMW) form. Acidification, for example, causes dodecameric rings of human peroxiredoxin 3 (HsPrx3) to stack into long helical filaments. In this work, a 4.1-Å resolution structure of low-pH-instigated helical filaments was elucidated, showing a locally unfolded active site and partially folded C terminus. A 2.8-Å crystal structure of HsPrx3 was determined at pH 8.5 under reducing conditions, wherein dodecameric rings are arranged as a short stack, with symmetry similar to low-pH filaments. In contrast to previous observations, the crystal structure displays both a fully folded active site and ordered C terminus, suggesting that the HsPrx3 HMW form maintains catalytic activity. We propose a new role for the HMW form as a self-chaperoning assembly maintaining HsPrx3 function under stress.
Collapse
|
42
|
Vemu A, Atherton J, Spector JO, Szyk A, Moores CA, Roll-Mecak A. Structure and Dynamics of Single-isoform Recombinant Neuronal Human Tubulin. J Biol Chem 2016; 291:12907-15. [PMID: 27129203 PMCID: PMC4933209 DOI: 10.1074/jbc.c116.731133] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
Microtubules are polymers that cycle stochastically between polymerization and depolymerization, i.e. they exhibit "dynamic instability." This behavior is crucial for cell division, motility, and differentiation. Although studies in the last decade have made fundamental breakthroughs in our understanding of how cellular effectors modulate microtubule dynamics, analysis of the relationship between tubulin sequence, structure, and dynamics has been held back by a lack of dynamics measurements with and structural characterization of homogeneous isotypically pure engineered tubulin. Here, we report for the first time the cryo-EM structure and in vitro dynamics parameters of recombinant isotypically pure human tubulin. α1A/βIII is a purely neuronal tubulin isoform. The 4.2-Å structure of post-translationally unmodified human α1A/βIII microtubules shows overall similarity to that of heterogeneous brain microtubules, but it is distinguished by subtle differences at polymerization interfaces, which are hot spots for sequence divergence between tubulin isoforms. In vitro dynamics assays show that, like mosaic brain microtubules, recombinant homogeneous microtubules undergo dynamic instability, but they polymerize slower and have fewer catastrophes. Interestingly, we find that epitaxial growth of α1A/βIII microtubules from heterogeneous brain seeds is inefficient but can be fully rescued by incorporating as little as 5% of brain tubulin into the homogeneous α1A/βIII lattice. Our study establishes a system to examine the structure and dynamics of mammalian microtubules with well defined tubulin species and is a first and necessary step toward uncovering how tubulin genetic and chemical diversity is exploited to modulate intrinsic microtubule dynamics.
Collapse
Affiliation(s)
| | - Joseph Atherton
- the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London WC1E, United Kingdom
| | | | | | - Carolyn A Moores
- the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London WC1E, United Kingdom
| | - Antonina Roll-Mecak
- From the Cell Biology and Biophysics Unit, NINDS, and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
43
|
Volta phase plate cryo-EM of the small protein complex Prx3. Nat Commun 2016; 7:10534. [PMID: 26817416 PMCID: PMC4738354 DOI: 10.1038/ncomms10534] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/23/2015] [Indexed: 12/25/2022] Open
Abstract
Cryo-EM of large, macromolecular assemblies has seen a significant increase in the numbers of high-resolution structures since the arrival of direct electron detectors. However, sub-nanometre resolution cryo-EM structures are rare compared with crystal structure depositions, particularly for relatively small particles (<400 kDa). Here we demonstrate the benefits of Volta phase plates for single-particle analysis by time-efficient cryo-EM structure determination of 257 kDa human peroxiredoxin-3 dodecamers at 4.4 Å resolution. The Volta phase plate improves the applicability of cryo-EM for small molecules and accelerates structure determination. Although the resolution achievable with cryo-EM can now rival crystallography, its application to small protein assemblies remains challenging. Here the authors demonstrate the use of the Volta phase plate for single particle analysis and its potential for the study of small specimens.
Collapse
|
44
|
Liu Z, Guo F, Wang F, Li TC, Jiang W. 2.9 Å Resolution Cryo-EM 3D Reconstruction of Close-Packed Virus Particles. Structure 2016; 24:319-28. [PMID: 26777413 DOI: 10.1016/j.str.2015.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 01/15/2023]
Abstract
Single-particle cryoelectron microscopy typically discards close-packed particle images as unusable data. Here, we report an image processing strategy and case study of obtaining near-atomic resolution 3D reconstructions from close-packed particles. Multiple independent de novo initial models were constructed to determine and cross-validate the particle parameters. The particles with consistent views were further refined including not only Euler angles and center positions but also defocus, astigmatism, beam tilt, and overall and anisotropic magnification. We demonstrated this strategy with a 2.9 Å resolution reconstruction of a 1.67 MDa virus-like particle of a circovirus, PCV2, recorded on 86 photographic films. The map resolution was further validated with a phase-randomization test and local resolution assessment, and the atomic model was validated with MolProbity and EMRinger. Close-packed virus particles were thus shown not only to be useful for high-resolution 3D reconstructions but also to allow data collection at significantly improved throughput for near-atomic resolution reconstructions.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Fei Guo
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Feng Wang
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Wen Jiang
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
45
|
|
46
|
Wu S, Armache JP, Cheng Y. Single-particle cryo-EM data acquisition by using direct electron detection camera. Microscopy (Oxf) 2015; 65:35-41. [PMID: 26546989 DOI: 10.1093/jmicro/dfv355] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/08/2015] [Indexed: 11/14/2022] Open
Abstract
Recent advances in single-particle electron cryo-microscopy (cryo-EM) were largely facilitated by the application of direct electron detection cameras. These cameras feature not only a significant improvement in detective quantum efficiency but also a high frame rate that enables images to be acquired as 'movies' made of stacks of many frames. In this review, we discuss how the applications of direct electron detection cameras in cryo-EM have changed the way the data are acquired.
Collapse
Affiliation(s)
- Shenping Wu
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA Howard Hughes Medical Institute, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| |
Collapse
|