1
|
Barchet C, Fréchin L, Holvec S, Hazemann I, von Loeffelholz O, Klaholz BP. Focused classifications and refinements in high-resolution single particle cryo-EM analysis. J Struct Biol 2023; 215:108015. [PMID: 37659578 DOI: 10.1016/j.jsb.2023.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/27/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
Recent advances in cryo electron microscopy (cryo-EM) and image processing provide new opportunities to analyse drug targets at high resolution. However, structural heterogeneity limits resolution in many practical cases, hence restricting the level at which structural details can be analysed and drug design be performed. As structural disorder is not spread throughout the entire structure of a given macromolecular complex but instead is found in certain regions that move with respect to others and covering molecular scales from domain conformational changes up to the level of side chain conformations in ligand binding pockets, it is possible to focus the attention on those regions and the associated relative movements. Here we show how the usage of focused classifications and refinements provide insights into global conformational arrangements, exemplified on the human ribosome and on the cannabinoid G protein coupled receptor (GPCR), and how they can improve the local map resolution from an essentially disordered region to the 3-4 Å and finally to the 2 Å resolution range. A systematic analysis with variable spherical masks during focused refinement is presented showing that the choice of an optimal mask size helps refining to high resolution. This study covers several practical approaches on 4 examples illustrating how important mask size & shape and including neighbouring structural elements are for a focused analysis of a macromolecular complex. Such methods will be crucial for cryo-EM structure-based drug design of various medical targets and are applicable to single particle cryo-EM and electron tomography data.
Collapse
Affiliation(s)
- Charles Barchet
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Léo Fréchin
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Samuel Holvec
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
2
|
Xu N, Doerschuk PC. Reconstruction of Stochastic 3D Signals With Symmetric Statistics From 2D Projection Images Motivated by Cryo-Electron Microscopy. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 28:5479-5494. [PMID: 31095482 DOI: 10.1109/tip.2019.2915631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cryo-electron microscopy provides 2D projection images of the 3D electron scattering intensity of many instances of the particle under study (e.g., a virus). Both symmetry (rotational point groups) and heterogeneity are important aspects of biological particles and both aspects can be combined by describing the electron scattering intensity of the particle as a stochastic process with a symmetric probability law and, therefore, symmetric moments. A maximum likelihood estimator implemented by an expectation-maximization algorithm is described, which estimates the unknown statistics of the electron scattering intensity stochastic process from the images of instances of the particle. The algorithm is demonstrated on the bacteriophage HK97 and the virus [Formula: see text]. The results are contrasted with the existing algorithms, which assume that each instance of the particle has the symmetry rather than the less restrictive assumption that the probability law has the symmetry.
Collapse
|
4
|
Xu N, Veesler D, Doerschuk PC, Johnson JE. Allosteric effects in bacteriophage HK97 procapsids revealed directly from covariance analysis of cryo EM data. J Struct Biol 2018; 202:129-141. [PMID: 29331608 DOI: 10.1016/j.jsb.2017.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/24/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
The information content of cryo EM data sets exceeds that of the electron scattering potential (cryo EM) density initially derived for structure determination. Previously we demonstrated the power of data variance analysis for characterizing regions of cryo EM density that displayed functionally important variance anomalies associated with maturation cleavage events in Nudaurelia Omega Capensis Virus and the presence or absence of a maturation protease in bacteriophage HK97 procapsids. Here we extend the analysis in two ways. First, instead of imposing icosahedral symmetry on every particle in the data set during the variance analysis, we only assume that the data set as a whole has icosahedral symmetry. This change removes artifacts of high variance along icosahedral symmetry axes, but retains all of the features previously reported in the HK97 data set. Second we present a covariance analysis that reveals correlations in structural dynamics (variance) between the interior of the HK97 procapsid with the protease and regions of the exterior (not seen in the absence of the protease). The latter analysis corresponds well with hydrogen deuterium exchange studies previously published that reveal the same correlation.
Collapse
Affiliation(s)
- Nan Xu
- School of Electrical and Computer Engineering, Cornell University, United States
| | - David Veesler
- Department of Biochemistry, University of Washington, United States
| | - Peter C Doerschuk
- Meinig School of Biomedical Engineering and School of Electrical and Computer Engineering, Cornell University, Phillips Hall Room 305, Ithaca, NY 14853, United States.
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, United States
| |
Collapse
|