1
|
Sun J, He D, Fu Y, Zhang R, Guo H, Wang Z, Wang Y, Gao T, Wei Y, Guo Y, Pang Q, Liu Q. A novel lncRNA ARST represses glioma progression by inhibiting ALDOA-mediated actin cytoskeleton integrity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:187. [PMID: 34099027 PMCID: PMC8183030 DOI: 10.1186/s13046-021-01977-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/09/2021] [Indexed: 12/03/2022]
Abstract
Background Glioma is one of the most aggressive malignant brain tumors that is characterized with inevitably infiltrative growth and poor prognosis. ARST is a novel lncRNA whose expression level is significantly decreased in the patients with glioblastoma multiforme. However, the exact mechanisms of ARST in gliomagenesis are largely unknown. Methods The expressions of ARST in the glioma samples and cell lines were analyzed by qRT-PCR. FISH was utilized to detect the distribution of ARST in the glioma cells. CCK-8, EdU and flow cytometry were used to examine cellular viability, proliferation and apoptosis. Transwell and wound-healing assays were performed to determine the migratory and invasive abilities of the cells. Intracranial tumorigenesis models were established to explore the roles of ARST in vivo. RNA pulldown assay was used to examine proteins that bound to ARST. The activities of key enzymes in the glycolysis and production of lactate acid were measured by colorimetry. In addition, RIP, Co-IP, western blot and immunofluorescence were used to investigate the interaction and regulation between ARST, F-actin, ALDOA and cofilin. Results In this study, we reported that ARST was downregulated in the gliomas. Overexpression of ARST in the glioma cells significantly suppressed various cellular vital abilities such as cell growth, proliferation, migration and invasion. The tumorigenic capacity of these cells in vivo was reduced as well. We further demonstrated that the tumor suppressive effects of ARST could be mediated by a direct binding to a glycolytic enzyme aldolase A (ALDOA), which together with cofilin, keeping the polymerization and depolymerization of actin filaments in an orderly dynamic equilibrium. Upregulation of ARST interrupted the interaction between ALDOA and actin cytoskeleton, which led to a rapid cofilin-dependent loss of F-actin stress fibers. Conclusions Taken together, it is concluded that ARST performs its function via a non-metabolic pathway associated with ALDOA, which otherwise modifies the morphology and invasive properties of the glioma cells. This has added new perspective to its role in tumorigenesis, thus providing potential target for glioma diagnosis, therapy, and prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01977-9.
Collapse
Affiliation(s)
- Jun Sun
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.,Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.,Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yibing Fu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Hua Guo
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Zhaojuan Wang
- Department of Physiology, Shandong Medical College, Jinan, 250012, Shandong, People's Republic of China
| | - Yanan Wang
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.,Department of Pathology, Tai-an Municipal Hospital, Jinan, 250012, Shandong, People's Republic of China
| | - Taihong Gao
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yanbang Wei
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yuji Guo
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Hui MH, Rhine K, Tolan DR. Actin filament- and Wiskott-Aldrich syndrome protein-binding sites on fructose-1,6-bisphosphate aldolase are functionally distinct from the active site. Cytoskeleton (Hoboken) 2020; 78:129-141. [PMID: 33210455 DOI: 10.1002/cm.21646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 11/05/2022]
Abstract
The glycolytic enzyme fructose 1,6-(bis)phosphate aldolase (aldolase) is not only required for efficient utilization of glucose and fructose, but also for cytoskeletal functions like cytokinesis and cell motility. These differing roles are mediated by distinct and discrete binding interactions with aldolase's many binding partners, including actin filaments, Wiskott-Aldrich Syndrome protein (WASP), and Sorting Nexin 9 (SNX9). How these interactions are coordinated on the aldolase homotetramer of 160 kDa is unclear. In this study, the catalytic activity of wild-type aldolase is measured in the presence of actin filaments, and a WASP-derived peptide that binds to aldolase, or both. No appreciable changes in kcat or Km values are seen. Then, aldolase variants with substitutions targeting the tryptophan-binding pocket for WASP and SNX9 are created and perturbation of actin filament-, WASP peptide-, and SNX9 peptide-binding are assessed. Those that negatively impacted binding did not show an impact on aldolase catalysis. These results suggest that aldolase can engage in catalysis while simultaneously interacting with cytoskeletal machinery.
Collapse
Affiliation(s)
- Maggie H Hui
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Kevin Rhine
- Program in Cell, Molecular, and Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dean R Tolan
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Targeting a moonlighting function of aldolase induces apoptosis in cancer cells. Cell Death Dis 2019; 10:712. [PMID: 31558701 PMCID: PMC6763475 DOI: 10.1038/s41419-019-1968-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Muscle fructose-1,6-bisphosphate aldolase (ALDOA) is among the most abundant glycolytic enzymes in all cancer cells. Here, we show that the enzyme plays a previously unknown and critical role in a cancer cell survival. Simultaneous inhibition of ALDOA activity and interaction with F-actin cytoskeleton using ALDOA slow-binding inhibitor UM0112176 leads to a rapid cofilin-dependent loss of F-actin stress fibers which is associated with elevated ROS production, inhibition of ATP synthesis, increase in calcium levels, caspase activation and arrested cellular proliferation. These effects can be reproduced by silencing of ALDOA. The mechanism of pharmacological action is, however, independent of the catalytic function of the enzyme, specific to cancer cells, and is most deleterious to cells undergoing the epithelial–mesenchymal transition, a process facilitating cancer cell invasion. Our results demonstrate that the overabundance of ALDOA in cancer cells is associated with its moonlighting rather than catalytic functions. This may have significant implications for development of novel broad-based anti-cancer therapies.
Collapse
|