1
|
Luo D, Wang S, Gao L, Chen X. [Research progress on labial protuberances of anterior teeth in orthodontic treatment]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:586-592. [PMID: 39183065 PMCID: PMC11528138 DOI: 10.3724/zdxbyxb-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/16/2024] [Indexed: 08/27/2024]
Abstract
During orthodontic treatment, irregular and varying sized nodular bony protrusions may sometimes appear on the labial side of the patient's anterior alveolar bone, which is closely related to the differential bone remodeling on the inner and outer surfaces of the alveolar bone. Labial protuberances not only affect the aesthetic results of orthodontic treatment, but also pose potential risks to periodontal health. Currently, it is believed that the influencing factors of the formation of the labial protuberances may be related to the patient's gender and age, tooth movement speed, and extent of anterior teeth retraction. Labial protuberances typically resolve spontaneously, however, if persistent, alveoloplasty may be necessary for treatment. This review provides a summary on the occurrence, influencing factors of formation, potential biological mechanisms, and corresponding treatment methods of labial protuberances during orthodontic treatment.
Collapse
Affiliation(s)
- Dingwen Luo
- The Stomatology Hospital, Zhejiang University School of Medicine, Zhejiang University School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Zhejiang Provincial Key Laboratory of Oral Biomedical Research, Zhejiang University Cancer Center, Zhejiang Provincial Engineering Research Center of Oral Biomaterials and Devices, Hangzhou 310006, China.
| | - Sijie Wang
- The Stomatology Hospital, Zhejiang University School of Medicine, Zhejiang University School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Zhejiang Provincial Key Laboratory of Oral Biomedical Research, Zhejiang University Cancer Center, Zhejiang Provincial Engineering Research Center of Oral Biomaterials and Devices, Hangzhou 310006, China
| | - Lu Gao
- The Stomatology Hospital, Zhejiang University School of Medicine, Zhejiang University School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Zhejiang Provincial Key Laboratory of Oral Biomedical Research, Zhejiang University Cancer Center, Zhejiang Provincial Engineering Research Center of Oral Biomaterials and Devices, Hangzhou 310006, China
| | - Xiaoyan Chen
- The Stomatology Hospital, Zhejiang University School of Medicine, Zhejiang University School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Zhejiang Provincial Key Laboratory of Oral Biomedical Research, Zhejiang University Cancer Center, Zhejiang Provincial Engineering Research Center of Oral Biomaterials and Devices, Hangzhou 310006, China.
| |
Collapse
|
2
|
Abraham S, Gupta P, Govarthanan K, Rao S, Santra TS. Direction-oriented fiber guiding with a tunable tri-layer-3D scaffold for periodontal regeneration. RSC Adv 2024; 14:19806-19822. [PMID: 38899033 PMCID: PMC11186324 DOI: 10.1039/d4ra01459f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Multilayered scaffolds mimicking mechanical and biological host tissue architectures are the current prerequisites for successful tissue regeneration. We propose our tunable tri-layered scaffold, designed to represent the native periodontium for potential regenerative applications. The fused deposition modeling platform is used to fabricate the novel movable three-layered polylactic acid scaffold mimicking in vivo cementum, periodontal ligament, and alveolar bone layers. The scaffold is further provided with multiple angulated fibers, offering directional guidance and facilitating the anchorage dependence on cell adhesion. Additionally, surface modifications of the scaffold were made by incorporating coatings like collagen and different concentrations of gelatin methacryloyl to enrich the cell adhesion and proliferation. The surface characterization of our designed scaffolds was performed using tribological studies, atomic force microscopy, contact angle measurement, scanning electron microscopy, and micro-computed tomography. Furthermore, the material characterization of this scaffold was investigated by attenuated total reflectance-Fourier transformed infrared spectroscopy. The scaffold's mechanical characterization, such as strength and compression modulus, was demonstrated by compression testing. The L929 mouse fibroblast cells and MG63 human osteosarcoma cells have been cultured on the scaffold. The scaffold's superior biocompatibility was evaluated using fluorescence dye with fluorescence microscopy, scanning electron microscopy, in vitro wound healing assay, MTT assay, and flow cytometry. The mineralization capability of the scaffolds was also studied. In conclusion, our study demonstrated the construction of a multilayered movable scaffold, which is highly biocompatible and most suitable for various downstream applications such as periodontium and in situ tissue regeneration of complex, multilayered tissues.
Collapse
Affiliation(s)
- Sarin Abraham
- Department of Engineering Design, Indian Institute of Technology Madras Chennai 600036 India
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras Chennai 600036 India
| | - Kavitha Govarthanan
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bengaluru Karnataka 560065 India
| | - Suresh Rao
- Department of Engineering Design, Indian Institute of Technology Madras Chennai 600036 India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
3
|
Popowics TE, Hwang I, Lu J, Nguyen T, Sample M, Sangster A, Tang D, Dennison CR, Romanyk DL, Rafferty K, Greenlee G. In vivo measurement of strain in the periodontal space of pig (Sus scrofa) incisors using in-fiber Bragg sensors. J Morphol 2024; 285:e21738. [PMID: 38783683 DOI: 10.1002/jmor.21738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The incisor teeth in pigs, Sus scrofa, function in association with a disc-shaped snout to explore the environment for potential food. Understanding how mechanical loading applied to the tooth deforms the periodontal ligament (PDL) is important to determining the role of periodontal mechanoreceptors during food exploration and feeding. The objective of this study was to use fiber Bragg (FBG) sensors to measure strain in vivo within the PDL space of pig incisors. The central mandibular incisors of pigs underwent spring loaded lingual tipping during FBG strain recording within the labial periodontal space. FBG sensors were placed within the periodontal space of the central mandibular incisors of ~2-3-month-old farm pigs. The magnitude and orientation of spring loads are expected to mimic incisor contact with food. During incisor tipping with load calibrated springs, FBG strains in vitro (N = 6) and in vivo (N = 6) recorded at comparable load levels overlapped in range (-10-20 με). Linear regressions between peak FBG strains, that is, the highest recorded strain value, and baseline strains, that is, strain without applied spring load, were significant across all in vivo experiments (peak strain at 200 g vs. baseline, p = .04; peak strain at 2000 g vs. baseline p = .03; peak strain at 2000 g vs. 200 g, p = .004). These linear relationships indicate that on a per experiment basis, the maximum measured strain at different spring loads showed predictable differences. A Friedman test of the absolute value of peak strain confirmed the significant increase in strain between baseline, 200 g, and 2000 g spring activation (p = .02). Mainly compressive strains were recorded in the labial PDL space and increases in spring load applied in vivo generated increases in FBG strain measurements. These results demonstrate the capacity for FBG sensors to be used in vivo to assess transmission of occlusal loads through the periodontium. PDL strain is associated with mechanoreceptor stimulation and is expected to affect the functional morphology of the incisors. The overall low levels of strain observed may correspond with the robust functional morphology of pig incisors and the tendency for pigs to encounter diverse foods and substrates during food exploration.
Collapse
Affiliation(s)
- Tracy E Popowics
- Department of Oral Health Sciences, University of Washington, Seattle, Washington, USA
| | - Isabelle Hwang
- Department of Oral Health Sciences, University of Washington School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Jason Lu
- Department of Oral Health Sciences, University of Washington School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Tammy Nguyen
- Department of Oral Health Sciences, University of Washington School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Morgan Sample
- Department of Oral Health Sciences, University of Washington School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Anissa Sangster
- Department of Oral Health Sciences, University of Washington School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Derrick Tang
- Department of Oral Health Sciences, University of Washington, Seattle, Washington, USA
| | | | - Dan L Romanyk
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Katherine Rafferty
- Department of Orthodontics, University of Washington, Seattle, Washington, USA
| | - Geoffrey Greenlee
- Department of Orthodontics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Zhong J, Shibata Y, Wu C, Watanabe C, Chen J, Zheng K, Hu J, Swain MV, Li Q. Functional non-uniformity of periodontal ligaments tunes mechanobiological stimuli across soft- and hard-tissue interfaces. Acta Biomater 2023; 170:240-249. [PMID: 37634832 DOI: 10.1016/j.actbio.2023.08.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
The bone-periodontal ligament-tooth (BPT) complex is a unique mechanosensing soft-/hard-tissue interface, which governs the most rapid bony homeostasis in the body responding to external loadings. While the correlation between such loading and alveolar bone remodelling has been widely recognised, it has remained challenging to investigate the transmitted mechanobiological stimuli across such embedded soft-/hard-tissue interfaces of the BPT complex. Here, we propose a framework combining three distinct bioengineering techniques (i, ii, and iii below) to elucidate the innate functional non-uniformity of the PDL in tuning mechanical stimuli to the surrounding alveolar bone. The biphasic PDL mechanical properties measured via nanoindentation, namely the elastic moduli of fibres and ground substance at the sub-tissue level (i), were used as the input parameters in an image-based constitutive modelling framework for finite element simulation (ii). In tandem with U-net deep learning, the Gaussian mixture method enabled the comparison of 5195 possible pseudo-microstructures versus the innate non-uniformity of the PDL (iii). We found that the balance between hydrostatic pressure in PDL and the strain energy in the alveolar bone was maintained within a specific physiological range. The innate PDL microstructure ensures the transduction of favourable mechanobiological stimuli, thereby governing alveolar bone homeostasis. Our outcomes expand current knowledge of the PDL's mechanobiological roles and the proposed framework can be adopted to a broad range of similar soft-/hard- tissue interfaces, which may impact future tissue engineering, regenerative medicine, and evaluating therapeutic strategies. STATEMENT OF SIGNIFICANCE: A combination of cutting-edge technologies, including dynamic nanomechanical testing, high-resolution image-based modelling and machine learning facilitated computing, was used to elucidate the association between the microstructural non-uniformity and biomechanical competence of periodontal ligaments (PDLs). The innate PDL fibre network regulates mechanobiological stimuli, which govern alveolar bone remodelling, in different tissues across the bone-PDL-tooth (BPT) interfaces. These mechanobiological stimuli within the BPT are tuned within a physiological range by the non-uniform microstructure of PDLs, ensuring functional tissue homeostasis. The proposed framework in this study is also applicable for investigating the structure-function relationship in broader types of fibrous soft-/hard- tissue interfaces.
Collapse
Affiliation(s)
- Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yo Shibata
- Department of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Chi Wu
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chie Watanabe
- Department of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Junning Chen
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Keke Zheng
- Institute for Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Jingrui Hu
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Michael V Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Armijo L, Mancl L, Dennison CR, Houg K, Romanyk D, Popowics T. In-fiber Bragg sensor measurements assess fluid effects on strain in the periodontal space of an ex-vivo swine incisor complex under mechanical loading. J Biomech 2023; 157:111729. [PMID: 37473706 DOI: 10.1016/j.jbiomech.2023.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
The purpose of this study is to determine whether in-fiber Bragg grating (FBG) sensors detect changes within the periodontal ligament (PDL) of ex-vivo swine tooth-PDL-bone complex (TPBC) when manipulating fluid content. Recording strain will allow for a better understanding of the biomechanics of viscoelastic load transfer from the tooth to the PDL during chewing and/or orthodontic tooth movement, as well as replication of these dynamics in regenerated PDL tissues. FBG sensors placed within the PDL of swine incisor teeth were used to measure strain resulting from an intrusive load. Specimens were mounted in a custom platform within an MTS machine and a compressive load was applied at 0.3 mm/s to a depth of 0.5 mm and held for 10 s. Median peak strain and load and median absolute deviation (MAD) were compared: dry vs. saline (n = 19) with bias-corrected bootstrap 95% CI. Dry vs. saline conditions did not statistically differ (median peaks of 5με, 103-105 N) and recorded strains showed high repeatability (MAD of 0.82με, 0.72με, respectively). FBG sensors did not detect the fluid changes in this study, suggesting that the deformation of tissues in the PDL space collectively determine FBG strain in response to tooth loading. The repeatability of measurements demonstrates the potential for FBG sensors to assess the strain in the PDL space of an in vivo swine model.
Collapse
Affiliation(s)
- Leigh Armijo
- Dept. of Orthodontics, University of Washington School of Dentistry, Seattle, WA 98195, USA.
| | - Lloyd Mancl
- Dept. of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA 98195, USA.
| | | | - Kathryn Houg
- Dept. of Mechanical Engineering and School of Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Dan Romanyk
- Dept. of Mechanical Engineering and School of Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Tracy Popowics
- Box 357475, Dept. of Oral Health Sciences, 1959 Pacific Ave. NE, University of Washington School of Dentistry, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Helmer LML, Klop C, Lobbezoo F, de Lange J, Koolstra JH, Dubois L. Load distribution after unilateral condylar fracture with shortening of the ramus: a finite element model study. Head Face Med 2023; 19:27. [PMID: 37422658 DOI: 10.1186/s13005-023-00370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
OBJECTIVES After a fracture of the condyle, the fractured ramus is often shortened, which causes premature dental contact on the fractured side and a contralateral open bite. The imbalance could change the load in the temporomandibular joints (TMJs). This change could lead to remodelling of the TMJs to compensate for the imbalance in the masticatory system. The load in the non-fractured condyle is expected to increase, and the load in the fractured condyle to decrease. MATERIALS AND METHODS These changes cannot be measured in a clinical situation. Therefore a finite element model (FEM) of the masticatory system was used. In the FEM a fractured right condyle with shortening of the ramus was induced, which varied from 2 to 16 mm. RESULTS Results show that, with a larger shortening of the ramus, the load in the fractured condyle decreases and the load in the non-fractured condyle increases. In the fractured condyle during closed mouth a major descent in load, hence a cut-off point, was visible between a shortening of 6 mm and 8 mm. CONCLUSIONS In conclusion, the change of load could be associated with remodelling on both condyles due to shortening of the ramus. CLINICAL RELEVANCE The cut-off point implies that shortening over 6 mm could present more difficulty for the body to compensate.
Collapse
Affiliation(s)
- Loreine M L Helmer
- Department of Oral and Maxillofacial Surgery, Amsterdam Academic Medical Centers and Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Cornelis Klop
- Department of Oral and Maxillofacial Surgery, Amsterdam Academic Medical Centers and Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam Academic Medical Centers and Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan Harm Koolstra
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Leander Dubois
- Department of Oral and Maxillofacial Surgery, Amsterdam Academic Medical Centers and Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Gauthier R, Attik N, Chevalier C, Salles V, Grosgogeat B, Gritsch K, Trunfio-Sfarghiu AM. 3D Electrospun Polycaprolactone Scaffolds to Assess Human Periodontal Ligament Cells Mechanobiological Behaviour. Biomimetics (Basel) 2023; 8:biomimetics8010108. [PMID: 36975338 PMCID: PMC10046578 DOI: 10.3390/biomimetics8010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023] Open
Abstract
While periodontal ligament cells are sensitive to their 3D biomechanical environment, only a few 3D in vitro models have been used to investigate the periodontal cells mechanobiological behavior. The objective of the current study was to assess the capability of a 3D fibrous scaffold to transmit a mechanical loading to the periodontal ligament cells. Three-dimensional fibrous polycaprolactone (PCL) scaffolds were synthetized through electrospinning. Scaffolds seeded with human periodontal cells (103 mL-1) were subjected to static (n = 9) or to a sinusoidal axial compressive loading in an in-house bioreactor (n = 9). At the end of the culture, the dynamic loading seemed to have an influence on the cells' morphology, with a lower number of visible cells on the scaffolds surface and a lower expression of actin filament. Furthermore, the dynamic loading presented a tendency to decrease the Alkaline Phosphatase activity and the production of Interleukin-6 while these two biomolecular markers were increased after 21 days of static culture. Together, these results showed that load transmission is occurring in the 3D electrospun PCL fibrous scaffolds, suggesting that it can be used to better understand the periodontal ligament cells mechanobiology. The current study shows a relevant way to investigate periodontal mechanobiology using 3D fibrous scaffolds.
Collapse
Affiliation(s)
- Rémy Gauthier
- UCBL, MATEIS UMR CNRS 5510, Bât. Saint Exupéry, Univ Lyon, CNRS, INSA de Lyon, 23 Av. Jean Capelle, 69621 Villeurbanne, France
| | - Nina Attik
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Univ Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
- Faculté d'Odontologie, Univ Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Charlène Chevalier
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Univ Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Vincent Salles
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Univ Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Brigitte Grosgogeat
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Univ Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
- Faculté d'Odontologie, Univ Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- Hospices Civils de Lyon, Service d'Odontologie, 69008 Lyon, France
| | - Kerstin Gritsch
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Univ Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
- Faculté d'Odontologie, Univ Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- Hospices Civils de Lyon, Service d'Odontologie, 69008 Lyon, France
| | | |
Collapse
|
8
|
Li L, Guo C, Xu S, Guo H, Yu P, Liu L, Tian J. Mathematical Model and microCT-Based Kinematic Analysis of the Rostrum Mouthparts in Cyrtotrachelus buqueti Guer (Coleoptera: Curculionidae). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:860-877. [PMID: 33993901 DOI: 10.1017/s143192762100043x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To uncover the chewing mechanism of Cyrtotrachelus buqueti Guer, a mathematical model was created and a kinematic analysis of its rostrum mouthparts was conducted for, to our knowledge, the first time. To reduce noise and improve the quality of scanning electron micrographs of the weevil's mouthparts, nonlocal means and integral nonlocal means algorithms were proposed. Additionally, based on a comparison and analysis of five classical edge detection algorithms, a multiscale edge detection algorithm based on the B-spline wavelet was used to obtain the boundaries of structural features. The least squares method was used to analyze the data of the mouthparts to fit the mathematical model and fitted curves were obtained using Gaussian equations. The results show that curvature and concave-convex variations of the weevil's mouthparts can highlight fluctuations in friction effects when it chews bamboo shoots, which is helpful in preventing debris from bamboo shoots or other debris from sticking to the mouthpart surfaces. Moreover, this paper highlights the utility of micro-computed tomography (microCT) for three-dimensional (3D) reconstruction and a flowchart is suggested. The reconstructed slices were 9.0 μm thick and an accurate 3D rendered model was obtained from a series of microCT slices. Finally, a real model of the rostrum mouthparts was analyzed using finite-element analysis. The results provide a biological template for the design of a novel bionic drilling mechanism.
Collapse
Affiliation(s)
- Longhai Li
- School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou221018, China
| | - Ce Guo
- Institute of Bio-inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing210016, China
| | - Shun Xu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), College of Biological and Agricultural Engineering, Jilin University, Changchun130025, China
| | - Huafeng Guo
- School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou221018, China
| | - Ping Yu
- School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou221018, China
| | - Lei Liu
- School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou221018, China
| | - Jing Tian
- School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou221018, China
| |
Collapse
|
9
|
Zhong J, Pierantoni M, Weinkamer R, Brumfeld V, Zheng K, Chen J, Swain MV, Weiner S, Li Q. Microstructural heterogeneity of the collagenous network in the loaded and unloaded periodontal ligament and its biomechanical implications. J Struct Biol 2021; 213:107772. [PMID: 34311076 DOI: 10.1016/j.jsb.2021.107772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023]
Abstract
The periodontal ligament (PDL) is a highly heterogeneous fibrous connective tissue and plays a critical role in distributing occlusal forces and regulating tissue remodeling. Its mechanical properties are largely determined by the extracellular matrix, comprising a collagenous fiber network interacting with the capillary system as well as interstitial fluid containing proteoglycans. While the phase-contrast micro-CT technique has portrayed the 3D microscopic heterogeneity of PDL, the topological parameters of its network, which is crucial to understanding the multiscale constitutive behavior of this tissue, has not been characterized quantitatively. This study aimed to provide new understanding of such microscopic heterogeneity of the PDL with quantifications at both tissue and collagen network levels in a spatial manner, by combining phase-contrast micro-CT imaging and a purpose-built image processing algorithm for fiber analysis. Both variations within a PDL and among the PDL with different shapes, i.e. round-shaped and kidney-shaped PDLs, are described in terms of tissue thickness, fiber distribution, local fiber densities, and fiber orientation (namely azimuthal and elevation angles). Furthermore, the tissue and collagen fiber network responses to mechanical loading were evaluated in a similar manner. A 3D helical alignment pattern was observed in the fiber network, which appears to regulate and adapt a screw-like tooth motion under occlusion. The microstructural heterogeneity quantified here allows development of sample-specific constitutive models to characterize the PDL's functional and pathological loading responses, thereby providing a new multiscale framework for advancing our knowledge of this complex limited mobility soft-hard tissue interface.
Collapse
Affiliation(s)
- Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia
| | - Maria Pierantoni
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Keke Zheng
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Junning Chen
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Michael V Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia.
| |
Collapse
|
10
|
Cementum thickening leads to lower whole tooth mobility and reduced root stresses: An in silico study on aging effects during mastication. J Struct Biol 2021; 213:107726. [PMID: 33781897 DOI: 10.1016/j.jsb.2021.107726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022]
Abstract
In the course of a lifetime the crowns of teeth wear off, cementum thickens and the pulp closes-in or may stiffen. Little is known about how these changes affect the tooth response to load. Using a series of finite element models of teeth attached to the jawbone, and by comparing these to a validated model of a 'young' pig 3-rooted tooth, the effects of these structural changes were studied. Models of altered teeth show a stiffer response to mastication even when material properties used are identical to those found in 'young' teeth. This stiffening response to occlusal loads is mostly caused by the thicker cementum found in 'old' teeth. Tensile stresses associated with bending of dentine in the roots fall into a narrower distribution range with lower peak values. It is speculated that this is a possible protective adaptation mechanism of the aging tooth to avoid fracture. The greatest reduction in lateral motion was seen in the bucco-lingual direction. We propose that greater tooth motion during mastication is typical for the young growing animal. This motion is reduced in adulthood, favoring less off-axis loading, possibly to counteract natural bone resorption and consequent compromised anchoring.
Collapse
|
11
|
Gauthier R, Jeannin C, Attik N, Trunfio-Sfarghiu AM, Gritsch K, Grosgogeat B. Tissue Engineering for Periodontal Ligament Regeneration: Biomechanical Specifications. J Biomech Eng 2021; 143:030801. [PMID: 33067629 DOI: 10.1115/1.4048810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 11/08/2022]
Abstract
The periodontal biomechanical environment is very difficult to investigate. By the complex geometry and composition of the periodontal ligament (PDL), its mechanical behavior is very dependent on the type of loading (compressive versus tensile loading; static versus cyclic loading; uniaxial versus multiaxial) and the location around the root (cervical, middle, or apical). These different aspects of the PDL make it difficult to develop a functional biomaterial to treat periodontal attachment due to periodontal diseases. This review aims to describe the structural and biomechanical properties of the PDL. Particular importance is placed in the close interrelationship that exists between structure and biomechanics: the PDL structural organization is specific to its biomechanical environment, and its biomechanical properties are specific to its structural arrangement. This balance between structure and biomechanics can be explained by a mechanosensitive periodontal cellular activity. These specifications have to be considered in the further tissue engineering strategies for the development of an efficient biomaterial for periodontal tissues regeneration.
Collapse
Affiliation(s)
- R Gauthier
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France
| | - Christophe Jeannin
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France; Hospices Civils de Lyon, Service d'Odontologie, Lyon 69007, France
| | - N Attik
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France
| | | | - K Gritsch
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France; Hospices Civils de Lyon, Service d'Odontologie, Lyon 69007, France
| | - B Grosgogeat
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France; Hospices Civils de Lyon, Service d'Odontologie, Lyon 69007, France
| |
Collapse
|
12
|
Tavano KTA, Botelho AM, Douglas-de-Oliveira DW, Avila AF, Huebner R. Resistance to fracture of intraradicular posts made of biological materials. BMC Oral Health 2020; 20:300. [PMID: 33143720 PMCID: PMC7607859 DOI: 10.1186/s12903-020-01295-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/22/2020] [Indexed: 12/04/2022] Open
Abstract
Background The aim was to analyze the fracture resistance of human teeth treated endodontically and restored with posts made of bovine dentin, human dentin, or glass fiber, and to evaluate the fracture pattern. Methods Cylindrical posts of 1.5 mm in diameter cemented to the roots of human maxillary canines presented a length of 15 mm, cervical diameter of 5–5.5 mm in the mesiodistal direction, and 7–7.5 mm in the vestibule-palatal direction. The groups studied were: Group I—10 glass fiber posts; Group II—10 human dentin posts; Group III—10 bovine dentin posts (self-adhesive resin cement); and Group IV—10 bovine dentin posts (resin-modified glass-ionomer cements). The coronal part of tooth was restored with a standardized core build-up using composite. All of the groups were submitted to a compression force test and the resistance to fracture was verified using a universal testing machine. The fracture pattern was likewise evaluated.
Results The values of resistance to fracture were: 723.3N in group I, 561.5N in group II, 556.6N in group III, and, 613.27N in group IV. However, no statistically significant difference was observed among the groups. The fractures in groups I and II were most commonly found in the middle/apical third and were considered irreparable. For restored teeth in group III, half of the fractures appeared in the cervical third and were reparable. In group IV, all of the fractures were reparable, with the majority in the cervical thirds. Conclusion Bovine dentin can be used as intraradicular post to substitute human dentin and glass fiber posts. The greater the malleability of the post, the greater the chances of survival of the teeth when subjected to fracture testing.
Collapse
|
13
|
Connizzo BK, Sun L, Lacin N, Gendelman A, Solomonov I, Sagi I, Grodzinsky AJ, Naveh GRS. Nonuniformity in Periodontal Ligament: Mechanics and Matrix Composition. J Dent Res 2020; 100:179-186. [PMID: 33043806 DOI: 10.1177/0022034520962455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The periodontal ligament (PDL) plays a critical role in providing immediate response to abrupt high loads during mastication while also facilitating slow remodeling of the alveolar bone. The PDL exceptional functionality is permitted by the unique nonuniform structure of the tissue. Two distinct areas that are critical to PDL function were previously identified: the furcation and the dense collar. Despite their hypothesized functions in tooth movement and maintenance, these 2 regions have not yet been compared within the context of their native environment. Therefore, the objective of this study is to elucidate the extracellular matrix (ECM) structure, composition, and biomechanical function of the furcation and the collar regions while maintaining the 3-dimensional (3D) structure in the murine PDL. We identify significant difference between the collar and furcation regions in both structure and mechanical properties. Specifically, we observed unique longitudinal structures in the dense collar that correlate with type VI collagen and LOX, both of which are associated with increased type I collagen density and tissue stiffness and are therefore proposed to function as scaffolds for tooth stabilization. We also found that the collar region is stiffer than the furcation region and therefore suggest that the dense collar acts as a suspense structure of the tooth within the bone during physiological loading. The furcation region of the PDL contained more proteins associated with reduced stiffness and higher tissue remodeling, as well as a dual mechanical behavior, suggesting a critical function in loads transfer and remodeling of the alveolar bone. In summary, this work unravels the nonuniform nature of the PDL within the 3D structural context and establishes understanding of regional PDL function, which opens new avenues for future studies of remodeling, regeneration, and disease.
Collapse
Affiliation(s)
- B K Connizzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L Sun
- Department of Oral Medicine, Infection and Immunity, School of Dental Medicine, Harvard University, Boston, MA, USA
| | - N Lacin
- Department of Oral Medicine, Infection and Immunity, School of Dental Medicine, Harvard University, Boston, MA, USA
| | - A Gendelman
- Department of Oral Medicine, Infection and Immunity, School of Dental Medicine, Harvard University, Boston, MA, USA
| | - I Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - I Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - A J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - G R S Naveh
- Department of Oral Medicine, Infection and Immunity, School of Dental Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
14
|
Connizzo BK, Naveh GRS. In situ AFM-based nanoscale rheology reveals regional non-uniformity in viscoporoelastic mechanical behavior of the murine periodontal ligament. J Biomech 2020; 111:109996. [PMID: 32861150 DOI: 10.1016/j.jbiomech.2020.109996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022]
Abstract
The periodontal ligament (PDL) is a critical player in the maintenance of tooth health, acting as the primary stabilizer of tooth position. Recent studies have identified two unique regions within the PDL, the 'dense collar' region and the 'furcation' region, which exhibit distinct structural and compositional differences. However, specific functional differences between these regions have yet to be investigated. We adapted an AFM-based nanoscale rheology method to regionally assess mechanical properties and poroelasticity in the mouse PDL while minimizing the disruption of the 3-dimensional native boundary conditions, and then explored tissue mechanical function in four different regions within the dense collar as well as in the furcation region. We found significant differences between the collar and furcation regions, with the collar acting as a stabilizing ligamentous structure and the furcation acting as both a compressive cushion for vertical forces and a conduit for nutrient transport. While this finding supports our hypothesis, based on previous studies investigating structural and compositional differences, we also found surprising inhomogeneity within the collar region itself. This inhomogeneity supports previous findings of a tilting movement in the buccal direction of mandibular molar teeth and the structural adaptation to prevent lingual movement. Future work will aim to understand how different regions of the PDL change functionally during biological or mechanical perturbations, such as orthodontic tooth movement, development, or aging, with the ultimate goal of better understanding the mechanobiology of the PDL function in health and disease.
Collapse
Affiliation(s)
- Brianne K Connizzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Gili R S Naveh
- Department of Oral Medicine, Infection and Immunity, School of Dental Medicine, Harvard University, Boston, MA 02115, United States
| |
Collapse
|
15
|
Raguin E, Rechav K, Brumfeld V, Shahar R, Weiner S. Unique three-dimensional structure of a fish pharyngeal jaw subjected to unusually high mechanical loads. J Struct Biol 2020; 211:107530. [PMID: 32407760 DOI: 10.1016/j.jsb.2020.107530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 01/05/2023]
Abstract
We examine the structure of the bone of the pharyngeal jaws of a large fish, the black drum (Pogonias cromis), that uses its tooth-jaw complex to crush hard-shelled bivalve mollusks. During mastication huge compressive forces are concentrated in a tiny zone at the tooth-bone interface. We report on the structure of this bone, with emphasis on its contact with the teeth, at different hierarchical levels and in 3D. Micro-CT shows that the molariform teeth do not have roots and are supported by a circular narrow bony rim that surrounds the periphery of the tooth base. The lower pharyngeal jaw is highly porous, as seen by reflected light microscopy and secondary electron microscopy (SE-SEM). Porosity decreases close to the bone-tooth interface and back-scattered electron (BSE-SEM) microscopy shows a slight elevation in mineral density. Focused ion beam - scanning electron microscopy (FIB-SEM) in the serial surface view (SSV) mode reveals a most surprising organization at the nanoscale level: parallel arrays of mineralized collagen fibrils surrounding channels of ~100 nm diameter, both with their long axes oriented along the load direction. The channels are filled with organic matter. These fibril-channel arrays are surrounded by a highly disordered mineralized material. This unusual structure clearly functions efficiently under compression, but the precise way by which this unique arrangement achieves this function is unknown.
Collapse
Affiliation(s)
- Emeline Raguin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Fleck C, Burke M, Ganzosch G, Müller C, Currey JD, Zaslansky P. Breaking crown dentine in whole teeth: 3D observations of prevalent fracture patterns following overload. Bone 2020; 132:115178. [PMID: 31816420 DOI: 10.1016/j.bone.2019.115178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
Teeth with intact crowns rarely split or fracture, despite decades of cyclic loading and occasional unexpected overload. This is largely attributed to the presence of dentine, since cracking and fracture of enamel have been frequently reported. Dentine is similar to bone, comprising mineralised collagen fibres as a main constituent. Unlike cortical bone, however, where microcracking and damage arrest are essential for re/modelling and healing, dentine can neither remodel nor regenerate. This raises questions regarding the evolutionary benefits of toughening, leading to uncertainty whether cracks actually appear in dentine in situ. Here we study the notion that circumpulpal dentine is usually protected against, rather than damaged by severe overloads, even though it is not much more massive or stronger than it needs to be. To address this, we examined hydrated teeth still within whole jawbones of freshly-slaughtered skeletally mature pigs, mechanically loaded until fracture. Force displacement curves, optical and electron microscopy combined with 3D microstructural analysis by conventional micro-computed tomography (μCT) revealed mostly brittle fracture paths in circumpulpal crown dentine. Once overload cracks reach this mass of dentine they propagate rapidly along straight paths often parallel to the enamel flanks of the oblong shovel shaped premolars. We find infrequent signs of active toughening mechanisms with minimal crack diversion, ligament bridging and microcracking. When such toughening is seen, it mainly appears in softer dentine in the root, or near the dentine-enamel-junction (DEJ) in mantle dentine. We observed shear bands in overloaded circumpulpal dentine, due to mutual gliding of upper and lower segments. These shear bands are formed as periodic arrays of rotated dentine fragments. The 3D data consistently demonstrate the importance of the layered tooth structure, containing a stiff outer enamel shell, a soft sub-DEJ interlayer and a stiff circumpulpal dentine bulk, for deflecting cracks from splitting the tooth.
Collapse
Affiliation(s)
- Claudia Fleck
- Technische Universität Berlin, Chair of Materials Science and Engineering, Institute of Materials Science and Technologies, Str. des 17. Juni 136 - Sekr. EB13, 10623 Berlin, Germany.
| | - Martin Burke
- Technische Universität Berlin, Chair of Materials Science and Engineering, Institute of Materials Science and Technologies, Str. des 17. Juni 136 - Sekr. EB13, 10623 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department for Operative and Preventive Dentistry, Aßmannshauser Str. 4-6, 14297 Berlin, Germany
| | - Gregor Ganzosch
- Technische Universität Berlin, Institute of Mechanics, Chair of Continuum Mechanics and Materials Theory, Einsteinufer 5 - Sekr. MS2, 10587 Berlin, Germany
| | - Cecilia Müller
- Technische Universität Berlin, Chair of Materials Science and Engineering, Institute of Materials Science and Technologies, Str. des 17. Juni 136 - Sekr. EB13, 10623 Berlin, Germany
| | - John D Currey
- The University of York, Department of Biology, Wentworth Way, York YO10 5DD, United Kingdom
| | - Paul Zaslansky
- Charité - Universitätsmedizin Berlin, Department for Operative and Preventive Dentistry, Aßmannshauser Str. 4-6, 14297 Berlin, Germany.
| |
Collapse
|
17
|
Maria R, Ben-Zvi Y, Rechav K, Klein E, Shahar R, Weiner S. An unusual disordered alveolar bone material in the upper furcation region of minipig mandibles: A 3D hierarchical structural study. J Struct Biol 2019; 206:128-137. [PMID: 30849471 DOI: 10.1016/j.jsb.2019.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
Teeth are subjected to compressive loads during mastication. Under small loads the soft tissue periodontal ligament (PDL) deforms most. However when the loads increase and the PDL is highly compressed, the tooth and the alveolar bone supporting the tooth, begin to deform. Here we report on the structure of this alveolar bone in the upper furcation region of the first molars of mature minipigs. Using light microscopy and scanning electron microscopy (SEM) of bone cross-sections, we show that this bone is hypermineralized, containing abundant small pores around 1-5 μm in diameter, lacunae around 10-20 μm as well as larger spaces. This bone does not possess the typical lamellar motif or other repeating structures normally found in cortical or trabecular mammalian bone. We also use high resolution focused ion beam scanning electron microscopy (FIB-SEM) in the serial surface mode to image the 3D organization of the demineralized bone matrix. We show that the upper furcation bone matrix has a disordered isotropic structure composed mainly of individual collagen fibrils with no preferred orientation, as well as highly staining material that is probably proteoglycans. Much larger aligned arrays of collagen fibers - presumably Sharpey's fibers - are embedded in this material. This unusual furcation bone material is similar to the disordered material found in human lamellar bone. In the upper furcation region this disordered bone comprises almost all the volume excluding Sharpey's fibers. We surmise that this most unusual bone type functions to resist the repeating compressive loads incurred by molars during mastication.
Collapse
Affiliation(s)
- Raquel Maria
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yehonatan Ben-Zvi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Eugenia Klein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|