1
|
Thakrar FJ, Koladiya GA, Singh SP. Heterologous Expression and Structural Elucidation of a Highly Thermostable Alkaline Serine Protease from Haloalkaliphilic Actinobacterium, Nocardiopsis sp. Mit-7. Appl Biochem Biotechnol 2023; 195:7583-7602. [PMID: 37060510 DOI: 10.1007/s12010-023-04472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/16/2023]
Abstract
A highly thermostable alkaline serine protease gene (SPSPro, MN429015) obtained from haloalkaliphilic actinobacteria, Nocardiopsis sp. Mit-7 (NCIM-5746), was successfully cloned and overexpressed in Escherichia coli BL21 under the control of the T7 promoter in the pET Blue1 vector leading to a 20-kDa gene product. The molecular weight of the recombinant alkaline protease, as determined by SDS-PAGE and the Mass Spectrometer (MALDI-TOF), was 34 kDa. The structural and functional attributes of the recombinant thermostable alkaline serine protease were analyzed by Bioinformatic tools. 3D Monomeric Model and Molecular Docking established the role of the amino acid residues, aspartate, serine, and tryptophan, in the active site of thealkaline protease.The activity of the recombinant alkaline protease was optimal at 65 °C, 5 °C higher than its native protease. The recombinant protease was also active over a wide range of pH 7.0-13.0, with a maximal activity of 6050.47 U/mg at pH 9. Furthermore, the thermodynamic parameters of the immobilized recombinant alkaline protease suggested its reduced vulnerability against adverse conditions under which the enzyme has to undergo varied applications.
Collapse
Affiliation(s)
- Foram J Thakrar
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Gopi A Koladiya
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Satya P Singh
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India.
| |
Collapse
|
2
|
Lu KJ, Chang CW, Wang CH, Chen FYH, Huang IY, Huang PH, Yang CH, Wu HY, Wu WJ, Hsu KC, Ho MC, Tsai MD, Liao JC. An ATP-sensitive phosphoketolase regulates carbon fixation in cyanobacteria. Nat Metab 2023; 5:1111-1126. [PMID: 37349485 PMCID: PMC10365998 DOI: 10.1038/s42255-023-00831-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Regulation of CO2 fixation in cyanobacteria is important both for the organism and global carbon balance. Here we show that phosphoketolase in Synechococcus elongatus PCC7942 (SeXPK) possesses a distinct ATP-sensing mechanism, where a drop in ATP level allows SeXPK to divert precursors of the RuBisCO substrate away from the Calvin-Benson-Bassham cycle. Deleting the SeXPK gene increased CO2 fixation particularly during light-dark transitions. In high-density cultures, the Δxpk strain showed a 60% increase in carbon fixation and unexpectedly resulted in sucrose secretion without any pathway engineering. Using cryo-EM analysis, we discovered that these functions were enabled by a unique allosteric regulatory site involving two subunits jointly binding two ATP, which constantly suppresses the activity of SeXPK until the ATP level drops. This magnesium-independent ATP allosteric site is present in many species across all three domains of life, where it may also play important regulatory functions.
Collapse
Affiliation(s)
- Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chiung-Wen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Irene Y Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pin-Hsuan Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yi Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Prajapati S, Rabe von Pappenheim F, Tittmann K. Frontiers in the enzymology of thiamin diphosphate-dependent enzymes. Curr Opin Struct Biol 2022; 76:102441. [PMID: 35988322 DOI: 10.1016/j.sbi.2022.102441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Enzymes that use thiamin diphosphate (ThDP), the biologically active derivative of vitamin B1, as a cofactor play important roles in cellular metabolism in all domains of life. The analysis of ThDP enzymes in the past decades have provided a general framework for our understanding of enzyme catalysis of this protein family. In this review, we will discuss recent advances in the field that include the observation of "unusual" reactions and reaction intermediates that highlight the chemical versatility of the thiamin cofactor. Further topics cover the structural basis of cooperativity of ThDP enzymes, novel insights into the mechanism and structure of selected enzymes, and the discovery of "superassemblies" as reported, for example, acetohydroxy acid synthase. Finally, we summarize recent findings in the structural organisation and mode of action of 2-keto acid dehydrogenase multienzyme complexes and discuss future directions of this exciting research field.
Collapse
Affiliation(s)
- Sabin Prajapati
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany; Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany.
| | - Fabian Rabe von Pappenheim
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany; Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany.
| | - Kai Tittmann
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany; Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany.
| |
Collapse
|
4
|
Gladwin SA, Kenji O, Honda K. One-step preparation of cell-free ATP regeneration module based on non-oxidative glycolysis using thermophilic enzymes. Chembiochem 2022; 23:e202200210. [PMID: 35642750 DOI: 10.1002/cbic.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Indexed: 11/11/2022]
Abstract
Adenosine triphosphate (ATP) is an essential cofactor for energy-dependent enzymatic reactions that occur during in vitro biochemical conversion. Recently, an enzyme cascade based on non-oxidative glycolysis, which uses starch and orthophosphate as energy and phosphate sources, respectively, for the regeneration of ATP from adenosine diphosphate, has been developed (Wei et. al., ChemCatChem 2018 , 10 , 5597-5601). However, the 12 enzymes required for this system hampered its practical usability and further testing potential. Here, we addressed this issue by constructing co-expression vectors for the simultaneous gene expression of the 12 enzymes in a single expression strain. All enzymes were sourced from (hyper)thermophiles, which enabled a one-step purification via a heat-treatment process. We showed that the combination of the two enabled the ATP regeneration system to function in a single recombinant Escherichia coli strain. Additionally, this work provides a strategy to rationally design and control proteins expression levels in the co-expression vectors.
Collapse
Affiliation(s)
| | - Okano Kenji
- Kansai University: Kansai Daigaku, Department of Life Science and Biotechnology, JAPAN
| | - Kohsuke Honda
- Osaka University: Osaka Daigaku, International Center for Biotechnology, 2-1 Yamadaoka, 565-0871, Suita, JAPAN
| |
Collapse
|
5
|
High-resolution structure of phosphoketolase from Bifidobacterium longum determined by cryo-EM single-particle analysis. J Struct Biol 2022; 214:107842. [PMID: 35181457 DOI: 10.1016/j.jsb.2022.107842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
In bifidobacteria, phosphoketolase (PKT) plays a key role in the central hexose fermentation pathway called "bifid shunt." The three-dimensional structure of PKT from Bifidobacterium longum with co-enzyme thiamine diphosphate (ThDpp) was determined at 2.1 Å resolution by cryo-EM single-particle analysis using 196,147 particles to build up the structural model of a PKT octamer related by D4 symmetry. Although the cryo-EM structure of PKT was almost identical to the X-ray crystal structure previously determined at 2.2 Å resolution, several interesting structural features were observed in the cryo-EM structure. Because this structure was solved at relatively high resolution, it was observed that several amino acid residues adopt multiple conformations. Among them, Q546-D547-H548-N549 (the QN-loop) demonstrate the largest structural change, which seems to be related to the enzymatic function of PKT. The QN-loop is at the entrance to the substrate binding pocket. The minor conformer of the QN-loop is similar to the conformation of the QN-loop in the crystal structure. The major conformer is located further from ThDpp than the minor conformer. Interestingly, the major conformer in the cryo-EM structure of PKT resembles the corresponding loop structure of substrate-bound Escherichia coli transketolase. That is, the minor and major conformers may correspond to "closed" and "open" states for substrate access, respectively. Moreover, because of the high-resolution analysis, many water molecules were observed in the cryo-EM structure of PKT. Structural features of the water molecules in the cryo-EM structure are discussed and compared with water molecules observed in the crystal structure.
Collapse
|
6
|
Horvath D, Marcou G, Varnek A. Generative Topographic Mapping of the Docking Conformational Space. Molecules 2019; 24:molecules24122269. [PMID: 31216756 PMCID: PMC6631714 DOI: 10.3390/molecules24122269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/21/2022] Open
Abstract
Following previous efforts to render the Conformational Space (CS) of flexible compounds by Generative Topographic Mapping (GTM), this polyvalent mapping technique is here adapted to the docking problem. Contact fingerprints (CF) characterize ligands from the perspective of the binding site by monitoring protein atoms that are “touched” by those of the ligand. A “Contact” (CF) map was built by GTM-driven dimensionality reduction of the CF vector space. Alternatively, a “Hybrid” (Hy) map used a composite descriptor of CFs concatenated with ligand fragment descriptors. These maps indirectly represent the active site and integrate the binding information of multiple ligands. The concept is illustrated by a docking study into the ATP-binding site of CDK2, using the S4MPLE program to generate thousands of poses for each ligand. Both maps were challenged to (1) Discriminate native from non-native ligand poses, e.g., create RMSD-landscapes “colored” by the conformer ensemble of ligands of known binding modes in order to highlight “native” map zones (poses with RMSD to PDB structures < 2Å). Then, projection of poses of other ligands on such landscapes might serve to predict those falling in native zones as being well-docked. (2) Distinguish ligands–characterized by their ensemble of conformers–by their potency, e.g., testing the hypotheses whether zones privileged by potent binders are clearly separated from the ones preferred by decoys on the maps. Hybrid maps were better in both challenges and outperformed the classical energy and individual contact satisfaction scores in discriminating ligands by potency. Moreover, the intuitive visualization and analysis of docking CS may, as already mentioned, have several applications–from highlighting of key contacts to monitoring docking calculation convergence.
Collapse
Affiliation(s)
- Dragos Horvath
- Laboratoire de Chemoinformatique, UMR7140 CNRS/Univ. of Strasbourg, 1, rue Blaise Pascal, 67000 Strasbourg, France.
| | - Gilles Marcou
- Laboratoire de Chemoinformatique, UMR7140 CNRS/Univ. of Strasbourg, 1, rue Blaise Pascal, 67000 Strasbourg, France.
| | - Alexandre Varnek
- Laboratoire de Chemoinformatique, UMR7140 CNRS/Univ. of Strasbourg, 1, rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|