1
|
Martins C, Gardebien F, Nadaradjane AA, Diharce J, de Brevern AG. A Simple Analysis of the Second (Extra) Disulfide Bridge of V HHs. Molecules 2024; 29:4863. [PMID: 39459230 PMCID: PMC11509895 DOI: 10.3390/molecules29204863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Camelids produce a special type of antibody, known as VHHs, that has lost the VL domain, providing a more optimised VH domain. This particular highly stable antibody domain has interesting properties for biotechnological development. Ordinarily, those molecules possess only one disulphide bridge, but surprisingly, at least a quarter of these VHHs have a second one. Curiously, this does not seem to be essential for the stability and the function of this domain. In an attempt to characterise precisely the role and impact of this disulphide bridge at the molecular level, several in silico mutants of a VHH were created to disrupt this second disulphide bridge and those systems were submitted to molecular dynamics simulation. The loss of the second disulphide bridge leads to an increase in the flexibility of CDR1 and CDR3 and an unexpected rigidification of CDR2. Local conformational analysis shows local differences in the observed protein conformations. However, in fact, there is no exploration of new conformations but a change in the equilibrium between the different observed conformations. This explains why the interaction of VHHs is not really affected by the presence or absence of this second bridge, but their rigidity is slightly reduced. Therefore, the additional disulphide bridge does not seem to be an essential part of VHHs function.
Collapse
Affiliation(s)
- Carla Martins
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-75015 Paris, France;
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715 Saint Denis Messag, France; (F.G.); (A.A.N.)
| | - Fabrice Gardebien
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715 Saint Denis Messag, France; (F.G.); (A.A.N.)
| | - Aravindan Arun Nadaradjane
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715 Saint Denis Messag, France; (F.G.); (A.A.N.)
| | - Julien Diharce
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-75015 Paris, France;
| | - Alexandre G. de Brevern
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-75015 Paris, France;
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715 Saint Denis Messag, France; (F.G.); (A.A.N.)
| |
Collapse
|
2
|
Floch A, Galochkina T, Pirenne F, Tournamille C, de Brevern AG. Molecular dynamics of the human RhD and RhAG blood group proteins. Front Chem 2024; 12:1360392. [PMID: 38566898 PMCID: PMC10985258 DOI: 10.3389/fchem.2024.1360392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Blood group antigens of the RH system (formerly known as "Rhesus") play an important role in transfusion medicine because of the severe haemolytic consequences of antibodies to these antigens. No crystal structure is available for RhD proteins with its partner RhAG, and the precise stoichiometry of the trimer complex remains unknown. Methods: To analyse their structural properties, the trimers formed by RhD and/or RhAG subunits were generated by protein modelling and molecular dynamics simulations were performed. Results: No major differences in structural behaviour were found between trimers of different compositions. The conformation of the subunits is relatively constant during molecular dynamics simulations, except for three large disordered loops. Discussion: This work makes it possible to propose a reasonable stoichiometry and demonstrates the potential of studying the structural behaviour of these proteins to investigate the hundreds of genetic variants relevant to transfusion medicine.
Collapse
Affiliation(s)
- Aline Floch
- University Paris Est Créteil, INSERM U955 Equipe Transfusion et Maladies du Globule Rouge, IMRB, Créteil, France
- Laboratoire de Biologie Médicale de Référence en Immuno-Hématologie Moléculaire, Etablissement Français du Sang Ile-de-France, Créteil, France
| | - Tatiana Galochkina
- Université Paris Cité and Université des Antilles and Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, DSIMB Bioinformatics team, Paris, France
| | - France Pirenne
- University Paris Est Créteil, INSERM U955 Equipe Transfusion et Maladies du Globule Rouge, IMRB, Créteil, France
- Laboratoire de Biologie Médicale de Référence en Immuno-Hématologie Moléculaire, Etablissement Français du Sang Ile-de-France, Créteil, France
| | - Christophe Tournamille
- University Paris Est Créteil, INSERM U955 Equipe Transfusion et Maladies du Globule Rouge, IMRB, Créteil, France
- Laboratoire de Biologie Médicale de Référence en Immuno-Hématologie Moléculaire, Etablissement Français du Sang Ile-de-France, Créteil, France
| | - Alexandre G. de Brevern
- Université Paris Cité and Université des Antilles and Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, DSIMB Bioinformatics team, Paris, France
| |
Collapse
|
3
|
Shahrajabian MH, Sun W. Characterization of Intrinsically Disordered Proteins in Healthy and Diseased States by Nuclear Magnetic Resonance. Rev Recent Clin Trials 2024; 19:176-188. [PMID: 38409704 DOI: 10.2174/0115748871271420240213064251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Intrinsically Disordered Proteins (IDPs) are active in different cellular procedures like ordered assembly of chromatin and ribosomes, interaction with membrane, protein, and ligand binding, molecular recognition, binding, and transportation via nuclear pores, microfilaments and microtubules process and disassembly, protein functions, RNA chaperone, and nucleic acid binding, modulation of the central dogma, cell cycle, and other cellular activities, post-translational qualification and substitute splicing, and flexible entropic linker and management of signaling pathways. METHODS The intrinsic disorder is a precise structural characteristic that permits IDPs/IDPRs to be involved in both one-to-many and many-to-one signaling. IDPs/IDPRs also exert some dynamical and structural ordering, being much less constrained in their activities than folded proteins. Nuclear magnetic resonance (NMR) spectroscopy is a major technique for the characterization of IDPs, and it can be used for dynamic and structural studies of IDPs. RESULTS AND CONCLUSION This review was carried out to discuss intrinsically disordered proteins and their different goals, as well as the importance and effectiveness of NMR in characterizing intrinsically disordered proteins in healthy and diseased states.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Martins C, Diharce J, Nadaradjane AA, de Brevern AG. Evaluation of the Potential Impact of In Silico Humanization on V HH Dynamics. Int J Mol Sci 2023; 24:14586. [PMID: 37834033 PMCID: PMC10572902 DOI: 10.3390/ijms241914586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Camelids have the peculiarity of having classical antibodies composed of heavy and light chains as well as single-chain antibodies. They have lost their light chains and one heavy-chain domain. This evolutionary feature means that their terminal heavy-chain domain, VH, called VHH here, has no partner and forms an independent domain. The VHH is small and easy to express alone; it retains thermodynamic and interaction properties. Consequently, VHHs have garnered significant interest from both biotechnological and pharmaceutical perspectives. However, due to their origin in camelids, they cannot be used directly on humans. A humanization step is needed before a possible use. However, changes, even in the constant parts of the antibodies, can lead to a loss of quality. A dedicated tool, Llamanade, has recently been made available to the scientific community. In a previous paper, we already showed the different types of VHH dynamics. Here, we have selected a representative VHH and tested two humanization hypotheses to accurately assess the potential impact of these changes. This example shows that despite the non-negligible change (1/10th of residues) brought about by humanization, the effect is not drastic, and the humanized VHH retains conformational properties quite similar to those of the camelid VHH.
Collapse
Affiliation(s)
- Carla Martins
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-75014 Paris, France; (C.M.); (J.D.)
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715 Saint Denis Messag, France
| | - Julien Diharce
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-75014 Paris, France; (C.M.); (J.D.)
| | - Aravindan Arun Nadaradjane
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715 Saint Denis Messag, France
| | - Alexandre G. de Brevern
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-75014 Paris, France; (C.M.); (J.D.)
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715 Saint Denis Messag, France
| |
Collapse
|
5
|
Kranjc A, Narwani TJ, Abby SS, de Brevern AG. Structural Space of the Duffy Antigen/Receptor for Chemokines' Intrinsically Disordered Ectodomain 1 Explored by Temperature Replica-Exchange Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:13280. [PMID: 37686086 PMCID: PMC10488288 DOI: 10.3390/ijms241713280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Plasmodium vivax malaria affects 14 million people each year. Its invasion requires interactions between the parasitic Duffy-binding protein (PvDBP) and the N-terminal extracellular domain (ECD1) of the host's Duffy antigen/receptor for chemokines (DARC). ECD1 is highly flexible and intrinsically disordered, therefore it can adopt different conformations. We computationally modeled the challenging ECD1 local structure. With T-REMD simulations, we sampled its dynamic behavior and collected its most representative conformations. Our results suggest that most of the DARC ECD1 domain remains in a disordered state during the simulated time. Globular local conformations are found in the analyzed local free-energy minima. These globular conformations share an α-helix spanning residues Ser18 to Ser29 and in many cases they comprise an antiparallel β-sheet, whose β-strands are formed around residues Leu10 and Ala49. The formation of a parallel β-sheet is almost negligible. So far, progress in understanding the mechanisms forming the basis of the P. vivax malaria infection of reticulocytes has been hampered by experimental difficulties, along with a lack of DARC structural information. Our collection of the most probable ECD1 structural conformations will help to advance modeling of the DARC structure and to explore DARC-ECD1 interactions with a range of physiological and pathological ligands.
Collapse
Affiliation(s)
- Agata Kranjc
- Université Paris Cité and Université des Antilles and Université de la Réunion, BIGR, UMR_S1134, DSIMB Team, Inserm, F-75014 Paris, France;
- Institut National de la Transfusion Sanguine (INTS), F-75015 Paris, France
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Tarun Jairaj Narwani
- Université Paris Cité and Université des Antilles and Université de la Réunion, BIGR, UMR_S1134, DSIMB Team, Inserm, F-75014 Paris, France;
- Institut National de la Transfusion Sanguine (INTS), F-75015 Paris, France
| | - Sophie S. Abby
- University Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, F-38000 Grenoble, France;
| | - Alexandre G. de Brevern
- Université Paris Cité and Université des Antilles and Université de la Réunion, BIGR, UMR_S1134, DSIMB Team, Inserm, F-75014 Paris, France;
- Institut National de la Transfusion Sanguine (INTS), F-75015 Paris, France
| |
Collapse
|
6
|
Structural and Dynamic Differences between Calreticulin Mutants Associated with Essential Thrombocythemia. Biomolecules 2023; 13:biom13030509. [PMID: 36979444 PMCID: PMC10046389 DOI: 10.3390/biom13030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Essential thrombocythemia (ET) is a blood cancer. ET is characterized by an overproduction of platelets that can lead to thrombosis formation. Platelet overproduction occurs in megakaryocytes through a signaling pathway that could involve JAK2, MPL, or CALR proteins. CALR mutations are associated with 25–30% of ET patients; CALR variants must be dimerized to induce ET. We classified these variants into five classes named A to E; classes A and B are the most frequent classes in patients with ET. The dynamic properties of these five classes using structural models of CALR’s C-domain were analyzed using molecular dynamics simulations. Classes A, B, and C are associated with frameshifts in the C-domain. Their dimers can be stable only if a disulfide bond is formed; otherwise, the two monomers repulse each other. Classes D and E cannot be stable as dimers due to the absence of disulfide bonds. Class E and wild-type CALR have similar dynamic properties. These results suggest that the disulfide bond newly formed in classes A, B, and C may be essential for the pathogenicity of these variants. They also underline that class E cannot be directly related to ET but corresponds to human polymorphisms.
Collapse
|
7
|
General Trends of the Camelidae Antibody V HHs Domain Dynamics. Int J Mol Sci 2023; 24:ijms24054511. [PMID: 36901942 PMCID: PMC10003728 DOI: 10.3390/ijms24054511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Conformational flexibility plays an essential role in antibodies' functional and structural stability. They facilitate and determine the strength of antigen-antibody interactions. Camelidae express an interesting subtype of single-chain antibody, named Heavy Chain only Antibody. They have only one N-terminal Variable domain (VHH) per chain, composed of Frameworks (FRs) and Complementarity Determining regions (CDRs) like their VH and VL counterparts in IgG. Even when expressed independently, VHH domains display excellent solubility and (thermo)stability, which helps them to retain their impressive interaction capabilities. Sequence and structural features of VHH domains contributing to these abilities have already been studied compared to classical antibodies. To have the broadest view and understand the changes in dynamics of these macromolecules, large-scale molecular dynamics simulations for a large number of non-redundant VHH structures have been performed for the first time. This analysis reveals the most prevalent movements in these domains. It reveals the four main classes of VHHs dynamics. Diverse local changes were observed in CDRs with various intensities. Similarly, different types of constraints were observed in CDRs, while FRs close to CDRs were sometimes primarily impacted. This study sheds light on the changes in flexibility in different regions of VHH that may impact their in silico design.
Collapse
|
8
|
Analysis of Integrin α IIb Subunit Dynamics Reveals Long-Range Effects of Missense Mutations on Calf Domains. Int J Mol Sci 2022; 23:ijms23020858. [PMID: 35055046 PMCID: PMC8776176 DOI: 10.3390/ijms23020858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Integrin αIIbβ3, a glycoprotein complex expressed at the platelet surface, is involved in platelet aggregation and contributes to primary haemostasis. Several integrin αIIbβ3 polymorphisms prevent the aggregation that causes haemorrhagic syndromes, such as Glanzmann thrombasthenia (GT). Access to 3D structure allows understanding the structural effects of polymorphisms related to GT. In a previous analysis using Molecular Dynamics (MD) simulations of αIIbCalf-1 domain structure, it was observed that GT associated with single amino acid variation affects distant loops, but not the mutated position. In this study, experiments are extended to Calf-1, Thigh, and Calf-2 domains. Two loops in Calf-2 are unstructured and therefore are modelled expertly using biophysical restraints. Surprisingly, MD revealed the presence of rigid zones in these loops. Detailed analysis with structural alphabet, the Proteins Blocks (PBs), allowed observing local changes in highly flexible regions. The variant P741R located at C-terminal of Calf-1 revealed that the Calf-2 presence did not affect the results obtained with isolated Calf-1 domain. Simulations for Calf-1 + Calf-2, and Thigh + Calf-1 variant systems are designed to comprehend the impact of five single amino acid variations in these domains. Distant conformational changes are observed, thus highlighting the potential role of allostery in the structural basis of GT.
Collapse
|
9
|
Caetano-Anollés K, Hernandez N, Mughal F, Tomaszewski T, Caetano-Anollés G. The seasonal behaviour of COVID-19 and its galectin-like culprit of the viral spike. METHODS IN MICROBIOLOGY 2021; 50:27-81. [PMID: 38620818 PMCID: PMC8590929 DOI: 10.1016/bs.mim.2021.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seasonal behaviour is an attribute of many viral diseases. Like other 'winter' RNA viruses, infections caused by the causative agent of COVID-19, SARS-CoV-2, appear to exhibit significant seasonal changes. Here we discuss the seasonal behaviour of COVID-19, emerging viral phenotypes, viral evolution, and how the mutational landscape of the virus affects the seasonal attributes of the disease. We propose that the multiple seasonal drivers behind infectious disease spread (and the spread of COVID-19 specifically) are in 'trade-off' relationships and can be better described within a framework of a 'triangle of viral persistence' modulated by the environment, physiology, and behaviour. This 'trade-off' exists as one trait cannot increase without a decrease in another. We also propose that molecular components of the virus can act as sensors of environment and physiology, and could represent molecular culprits of seasonality. We searched for flexible protein structures capable of being modulated by the environment and identified a galectin-like fold within the N-terminal domain of the spike protein of SARS-CoV-2 as a potential candidate. Tracking the prevalence of mutations in this structure resulted in the identification of a hemisphere-dependent seasonal pattern driven by mutational bursts. We propose that the galectin-like structure is a frequent target of mutations because it helps the virus evade or modulate the physiological responses of the host to further its spread and survival. The flexible regions of the N-terminal domain should now become a focus for mitigation through vaccines and therapeutics and for prediction and informed public health decision making.
Collapse
Affiliation(s)
| | - Nicolas Hernandez
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Tre Tomaszewski
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
10
|
Cretin G, Galochkina T, de Brevern AG, Gelly JC. PYTHIA: Deep Learning Approach for Local Protein Conformation Prediction. Int J Mol Sci 2021; 22:ijms22168831. [PMID: 34445537 PMCID: PMC8396346 DOI: 10.3390/ijms22168831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Protein Blocks (PBs) are a widely used structural alphabet describing local protein backbone conformation in terms of 16 possible conformational states, adopted by five consecutive amino acids. The representation of complex protein 3D structures as 1D PB sequences was previously successfully applied to protein structure alignment and protein structure prediction. In the current study, we present a new model, PYTHIA (predicting any conformation at high accuracy), for the prediction of the protein local conformations in terms of PBs directly from the amino acid sequence. PYTHIA is based on a deep residual inception-inside-inception neural network with convolutional block attention modules, predicting 1 of 16 PB classes from evolutionary information combined to physicochemical properties of individual amino acids. PYTHIA clearly outperforms the LOCUSTRA reference method for all PB classes and demonstrates great performance for PB prediction on particularly challenging proteins from the CASP14 free modelling category.
Collapse
Affiliation(s)
- Gabriel Cretin
- Biologie Intégrée du Globule Rouge, Université de Paris, UMR_S1134, BIGR, INSERM, 75015 Paris, France; (G.C.); (T.G.); (A.G.d.B.)
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Tatiana Galochkina
- Biologie Intégrée du Globule Rouge, Université de Paris, UMR_S1134, BIGR, INSERM, 75015 Paris, France; (G.C.); (T.G.); (A.G.d.B.)
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Alexandre G. de Brevern
- Biologie Intégrée du Globule Rouge, Université de Paris, UMR_S1134, BIGR, INSERM, 75015 Paris, France; (G.C.); (T.G.); (A.G.d.B.)
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Jean-Christophe Gelly
- Biologie Intégrée du Globule Rouge, Université de Paris, UMR_S1134, BIGR, INSERM, 75015 Paris, France; (G.C.); (T.G.); (A.G.d.B.)
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Correspondence:
| |
Collapse
|
11
|
Koker MY, Sarper N, Albayrak C, Zulfikar B, Zengin E, Saraymen B, Albayrak D, Koc B, Avcilar H, Karakükcü M, Chenet C, Bianchi F, de Brevern AG, Petermann R, Jallu V. New αIIbβ3 variants in 28 Turkish Glanzmann patients; Structural hypothesis for complex activation by residues variations in I-EGF domains. Platelets 2021; 33:551-561. [PMID: 34275420 DOI: 10.1080/09537104.2021.1947481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glanzmann thrombasthenia (GT) is a rare autosomal recessive bleeding disorder characterized by impaired platelet aggregation due to defects in integrin αIIbβ3, a fibrinogen receptor. Platelet phenotypes and allelic variations in 28 Turkish GT patients are reported. Platelets αIIbβ3 expression was evaluated by flow cytometry. Sequence analyzes of ITGA2B and ITGB3 genes allowed identifying nine variants. Non-sense variation effect on αIIbβ3 expression was studied by using transfected cell lines. 3D molecular dynamics (MDs) simulations allowed characterizing structural alterations. Five new alleles were described. αIIb:p.Gly423Asp, p.Asp560Ala and p.Tyr784Cys substitutions impaired αIIbβ3 expression. The αIIb:p.Gly128Val substitution allowed normal expression; however, the corresponding NM_000419.3:c.476G>T variation would create a cryptic donor splicing site altering mRNA processing. The β3:p.Gly540Asp substitution allowed αIIbβ3 expression in HEK-293 cells but induced its constitutive activation likely by impairing αIIb and β3 legs interaction. The substitution alters the β3 I-EGF-3 domain flexibility as shown by MDs simulations. GT variations are mostly unique although the NM_000419.3:c.1752 + 2 T > C and NM_000212.2:c.1697 G > A variations identified in 4 and 8 families, respectively, might be a current cause of GT in Turkey. MD simulations suggested how some subtle structural variations in the β3 I-EGF domains might induce constitutive activation of αIIbβ3 without altering the global domain structure.
Collapse
Affiliation(s)
- M Y Koker
- Faculty of Medicine, Department of Immunology, Erciyes University, Kayseri, Turkey
| | - N Sarper
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Kocaeli University, Kocaeli, Turkey
| | - C Albayrak
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology and Oncology, Ondokuz Mayis University, Samsun, Turkey
| | - B Zulfikar
- Oncology Institute, Department of Pediatric Hematology/Oncology, Istanbul University, İstanbul, Turkey
| | - E Zengin
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Kocaeli University, Kocaeli, Turkey
| | - B Saraymen
- Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - D Albayrak
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology and Oncology, Ondokuz Mayis University, Samsun, Turkey
| | - B Koc
- Oncology Institute, Department of Pediatric Hematology/Oncology, Istanbul University, İstanbul, Turkey
| | - H Avcilar
- Faculty of Medicine, Department of Immunology, Erciyes University, Kayseri, Turkey
| | - M Karakükcü
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Erciyes University, Kayseri, Turkey
| | - C Chenet
- Département d'Immunologie Plaquettaire, Institut National De La Transfusion Sanguine (INTS), Paris, France.,Centre National de Référence en Hémobiologie Périnatale (CNRHP), Site St Antoine, DMU Biologie et Génomique Médicales, AP-HP, Sorbonne Université PARIS, FRANCE
| | - F Bianchi
- Département d'Immunologie Plaquettaire, Institut National De La Transfusion Sanguine (INTS), Paris, France.,Centre National de Référence en Hémobiologie Périnatale (CNRHP), Site St Antoine, DMU Biologie et Génomique Médicales, AP-HP, Sorbonne Université PARIS, FRANCE
| | - A G de Brevern
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, DSIMB, Univ. Paris, Univ. De La Réunion, Univ. Des Antilles, Paris, France.,Institut National de la Transfusion Sanguine (INTS), Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - R Petermann
- Département d'Immunologie Plaquettaire, Institut National De La Transfusion Sanguine (INTS), Paris, France.,Centre National de Référence en Hémobiologie Périnatale (CNRHP), Site St Antoine, DMU Biologie et Génomique Médicales, AP-HP, Sorbonne Université PARIS, FRANCE.,Centre De Recherche Des Cordeliers, UMRS-1138, INSERM, Sorbone Université De Paris, Equipe ETREs (Ethics, Research, Translations), Paris, France
| | - V Jallu
- Département d'Immunologie Plaquettaire, Institut National De La Transfusion Sanguine (INTS), Paris, France.,Centre National de Référence en Hémobiologie Périnatale (CNRHP), Site St Antoine, DMU Biologie et Génomique Médicales, AP-HP, Sorbonne Université PARIS, FRANCE
| |
Collapse
|
12
|
de Brevern AG. Analysis of Protein Disorder Predictions in the Light of a Protein Structural Alphabet. Biomolecules 2020; 10:biom10071080. [PMID: 32698546 PMCID: PMC7408373 DOI: 10.3390/biom10071080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022] Open
Abstract
Intrinsically-disordered protein (IDP) characterization was an amazing change of paradigm in our classical sequence-structure-function theory. Moreover, IDPs are over-represented in major disease pathways and are now often targeted using small molecules for therapeutic purposes. This has had created a complex continuum from order-that encompasses rigid and flexible regions-to disorder regions; the latter being not accessible through classical crystallographic methodologies. In X-ray structures, the notion of order is dictated by access to resolved atom positions, providing rigidity and flexibility information with low and high experimental B-factors, while disorder is associated with the missing (non-resolved) residues. Nonetheless, some rigid regions can be found in disorder regions. Using ensembles of IDPs, their local conformations were analyzed in the light of a structural alphabet. An entropy index derived from this structural alphabet allowed us to propose a continuum of states from rigidity to flexibility and finally disorder. In this study, the analysis was extended to comparing these results to disorder predictions, underlying a limited correlation, and so opening new ideas to characterize and predict disorder.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- INSERM, UMR_S 1134, DSIMB, Univ Paris, INTS, Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
13
|
Melarkode Vattekatte A, Narwani TJ, Floch A, Maljković M, Bisoo S, Shinada NK, Kranjc A, Gelly JC, Srinivasan N, Mitić N, de Brevern AG. Data set of intrinsically disordered proteins analysed at a local protein conformation level. Data Brief 2020; 29:105383. [PMID: 32195305 PMCID: PMC7078294 DOI: 10.1016/j.dib.2020.105383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 10/26/2022] Open
Abstract
Intrinsic Disorder Proteins (IDPs) have become a hot topic since their characterisation in the 90s. The data presented in this article are related to our research entitled "A structural entropy index to analyse local conformations in Intrinsically Disordered Proteins" published in Journal of Structural Biology [1]. In this study, we quantified, for the first time, continuum from rigidity to flexibility and finally disorder. Non-disordered regions were also highlighted in the ensemble of disordered proteins. This work was done using the Protein Ensemble Database (PED), which is a useful database collecting series of protein structures considered as IDPs. The data set consists of a collection of cleaned protein files in classical pdb format that can be readily used as an input with most automatic analysis software. The accompanying data include the coding of all structural information in terms of a structural alphabet, namely Protein Blocks (PBs). An entropy index derived from PBs that allows apprehending the continuum between protein rigidity to flexibility to disorder is included, with information from secondary structure assignment, protein accessibility and prediction of disorder from the sequences. The data may be used for further structural bioinformatics studies of IDPs. It can also be used as a benchmark for evaluating disorder prediction methods.
Collapse
Affiliation(s)
- Akhila Melarkode Vattekatte
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Faculté des Sciences et Technologies, Saint Denis Messag, F-97715 La Réunion, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France
| | - Tarun Jairaj Narwani
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France
| | - Aline Floch
- Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Etablissement Français du Sang Ile de France, Créteil, France.,IMRB - INSERM U955 Team 2, Transfusion et maladies du globule rouge, Paris Est- Créteil Univ., Créteil, France.,UPEC, Université Paris Est-Créteil, Créteil, France
| | | | - Soubika Bisoo
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France
| | - Nicolas K Shinada
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France.,Discngine, SAS, 75012 Paris, France.,SBX Corp., Tōkyō-to, Shinagawa-ku, Tōkyō, Japan
| | - Agata Kranjc
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France
| | - Jean-Christophe Gelly
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France.,IBL, F-75015 Paris, France
| | | | - Nenad Mitić
- University of Belgrade, Faculty of Mathematics, Belgrade, Serbia
| | - Alexandre G de Brevern
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France.,IBL, F-75015 Paris, France
| |
Collapse
|