1
|
Piantanida L, Liddle JA, Hughes WL, Majikes JM. DNA nanostructure decoration: a how-to tutorial. NANOTECHNOLOGY 2024; 35:273001. [PMID: 38373400 DOI: 10.1088/1361-6528/ad2ac5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/18/2024] [Indexed: 02/21/2024]
Abstract
DNA Nanotechnology is being applied to multiple research fields. The functionality of DNA nanostructures is significantly enhanced by decorating them with nanoscale moieties including: proteins, metallic nanoparticles, quantum dots, and chromophores. Decoration is a complex process and developing protocols for reliable attachment routinely requires extensive trial and error. Additionally, the granular nature of scientific communication makes it difficult to discern general principles in DNA nanostructure decoration. This tutorial is a guidebook designed to minimize experimental bottlenecks and avoid dead-ends for those wishing to decorate DNA nanostructures. We supplement the reference material on available technical tools and procedures with a conceptual framework required to make efficient and effective decisions in the lab. Together these resources should aid both the novice and the expert to develop and execute a rapid, reliable decoration protocols.
Collapse
Affiliation(s)
- Luca Piantanida
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, B.C., V1V 1V7, Canada
| | - J Alexander Liddle
- National Institute of Standards and Technology, Gaithersburg, MD, 20878, United States of America
| | - William L Hughes
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, B.C., V1V 1V7, Canada
| | - Jacob M Majikes
- National Institute of Standards and Technology, Gaithersburg, MD, 20878, United States of America
| |
Collapse
|
2
|
Bortoluzzi MG, Neckel A, Bodah BW, Cardoso GT, Oliveira MLS, Toscan PC, Maculan LS, Lozano LP, Bodah ET, Silva LFO. Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3526-3544. [PMID: 38085483 DOI: 10.1007/s11356-023-31414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024]
Abstract
The main objective of this study is to analyze hazardous elements in nanoparticles (NPs) (smaller than 100 nm) and ultrafine particles (smaller than 1 µm) in Porto Alegre City, southern Brazil using a self-made passive sampler and Sentinel-3B SYN satellite images in 32 collection points. The Aerosol Optical Thickness proportion (T550) identification was conducted using images of the Sentinel-3B SYN satellite at 634 points sampled in 2019, 2020, 2021, and 2022. Focused ion beam scanning electron microscopy analyses were performed to identify chemical elements present in NPs and ultrafine particles, followed by single-stage cascade impactor to be processed by high-resolution transmission electron microscopy. This process was coupled with energy-dispersive X-ray spectroscopy and later analysis via secondary ion mass spectrometry. Data was acquired from Sentinel-3B SYN images, normalized to a standard mean of 0.83 µg/mg, at moderate spatial resolution (260 m), and modeled in the Sentinel Application Platform (SNAP) software v.8.0. Statistical matrix data was generated in the JASP software (Jeffreys's Amazing Statistics Program) v.0.14.1.0 followed by a K-means cluster analysis. The results demonstrate the presence of between 1 and 100 nm particles of the following chemical elements: Si, Al, K, Mg, P, and Ti. Many people go through these areas daily and may inhale or absorb these elements that can harm human health. In the Sentinel-3B SYN satellite images, the sum of squares in cluster 6 is 168,265 and in cluster 7 a total of 21,583. The use of images from the Sentinel-3B SYN satellite to obtain T550 levels is of great importance as it reveals that atmospheric pollution can move through air currents contaminating large areas on a global scale.
Collapse
Affiliation(s)
| | - Alcindo Neckel
- Atitus Educação, 304 - Villa Rodrigues, Passo Fundo, RS, 99070-220, Brazil.
- University of Minho, UMINHO, 4710-057, Porto, Portugal.
| | - Brian William Bodah
- Thaines and Bodah Center for Education and Development, 840 South Meadowlark Lane, Othello, WA, 99344, USA
- Workforce Education & Applied Baccalaureate Programs, Yakima Valley College, South 16th Avenue & Nob Hill Boulevard, Yakima, WA, 98902, USA
| | | | - Marcos L S Oliveira
- Department of Civil and Environmental Engineering, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
- Santa Catarina Research and Innovation Support Foundation (Fapesc), Florianópolis, SC, 88030-902, Brazil
| | | | | | - Liliana P Lozano
- Department of Civil and Environmental Engineering, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
- Postgraduate Doctoral Program in Society, Nature and Development, Universidade Federal Do Oeste Do Pará, UFOPA, Paraná, 68040-255, Brazil
| | - Eliane Thaines Bodah
- Thaines and Bodah Center for Education and Development, 840 South Meadowlark Lane, Othello, WA, 99344, USA
- State University of New York, Onondaga Community College, 4585West Seneca Turnpike, Syracuse, NY, 13215, USA
| | - Luis F O Silva
- Department of Civil and Environmental Engineering, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
- Postgraduate Doctoral Program in Society, Nature and Development, Universidade Federal Do Oeste Do Pará, UFOPA, Paraná, 68040-255, Brazil
- CDLAC - Data Collection Laboratory and Scientific Analysis LTDA, Nova Santa Rita, 92480-000, Brazil
| |
Collapse
|
3
|
Wickramanayake JS, Czymmek KJ. A conventional fixation volume electron microscopy protocol for plants. Methods Cell Biol 2023; 177:83-99. [PMID: 37451777 DOI: 10.1016/bs.mcb.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Volume electron microscopy techniques play an important role in plant research from understanding organelles and unicellular forms to developmental studies, environmental effects and microbial interactions with large plant structures, to name a few. Due to large air voids central vacuole, cell wall and waxy cuticle, many plant tissues pose challenges when trying to achieve high quality morphology, metal staining and adequate conductivity for high-resolution volume EM studies. Here, we applied a robust conventional chemical fixation strategy to address the special challenges of plant samples and suitable for, but not limited to, serial block-face and focused ion beam scanning electron microscopy. The chemistry of this protocol was modified from an approach developed for improved and uniform staining of large brain volumes. Briefly, primary fixation was in paraformaldehyde and glutaraldehyde with malachite green followed by secondary fixation with osmium tetroxide, potassium ferrocyanide, thiocarbohydrazide, osmium tetroxide and finally uranyl acetate and lead aspartate staining. Samples were then dehydrated in acetone with a propylene oxide transition and embedded in a hard formulation Quetol 651 resin. The samples were trimmed and mounted with silver epoxy, metal coated and imaged via serial block-face scanning electron microscopy and focal charge compensation for charge suppression. High-contrast plant tobacco and duckweed leaf cellular structures were readily visible including mitochondria, Golgi, endoplasmic reticulum and nuclear envelope membranes, as well as prominent chloroplast thylakoid membranes and individual lamella in grana stacks. This sample preparation protocol serves as a reliable starting point for routine plant volume electron microscopy.
Collapse
Affiliation(s)
- Janithri S Wickramanayake
- Donald Danforth Plant Science Center, Saint Louis, MO, United States; Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, MO, United States
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, Saint Louis, MO, United States; Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, MO, United States.
| |
Collapse
|
4
|
Bélanger S, Berensmann H, Baena V, Duncan K, Meyers BC, Narayan K, Czymmek KJ. A versatile enhanced freeze-substitution protocol for volume electron microscopy. Front Cell Dev Biol 2022; 10:933376. [PMID: 36003147 PMCID: PMC9393620 DOI: 10.3389/fcell.2022.933376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Volume electron microscopy, a powerful approach to generate large three-dimensional cell and tissue volumes at electron microscopy resolutions, is rapidly becoming a routine tool for understanding fundamental and applied biological questions. One of the enabling factors for its adoption has been the development of conventional fixation protocols with improved heavy metal staining. However, freeze-substitution with organic solvent-based fixation and staining has not realized the same level of benefit. Here, we report a straightforward approach including osmium tetroxide, acetone and up to 3% water substitution fluid (compatible with traditional or fast freeze-substitution protocols), warm-up and transition from organic solvent to aqueous 2% osmium tetroxide. Once fully hydrated, samples were processed in aqueous based potassium ferrocyanide, thiocarbohydrazide, osmium tetroxide, uranyl acetate and lead acetate before resin infiltration and polymerization. We observed a consistent and substantial increase in heavy metal staining across diverse and difficult-to-fix test organisms and tissue types, including plant tissues (Hordeum vulgare), nematode (Caenorhabditis elegans) and yeast (Saccharomyces cerevisiae). Our approach opens new possibilities to combine the benefits of cryo-preservation with enhanced contrast for volume electron microscopy in diverse organisms.
Collapse
Affiliation(s)
| | - Heather Berensmann
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Valentina Baena
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Keith Duncan
- Donald Danforth Plant Science Center, Saint Louis, MO, United States
| | - Blake C. Meyers
- Donald Danforth Plant Science Center, Saint Louis, MO, United States
- Division of Plant Science and Technology, University of Missouri–Columbia, Columbia, MO, United States
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Kirk J. Czymmek
- Donald Danforth Plant Science Center, Saint Louis, MO, United States
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, MO, United States
- *Correspondence: Kirk J. Czymmek,
| |
Collapse
|
5
|
Zechmann B, Möstl S, Zellnig G. Volumetric 3D reconstruction of plant leaf cells using SEM, ion milling, TEM, and serial sectioning. PLANTA 2022; 255:118. [PMID: 35522384 DOI: 10.1007/s00425-022-03905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Focused ion beam scanning electron microscopy is well suited for volumetric extractions and 3D reconstructions of plant cells and its organelles. The three-dimensional (3D) reconstruction of individual plant cells is an important tool to extract volumetric data of organelles and is necessary to fully understand ultrastructural changes and adaptations of plants to their environment. Methods such as the 3D reconstruction of cells based on light microscopical images often lack the resolution necessary to clearly reconstruct all cell compartments within a cell. The 3D reconstruction of cells through serial sectioning transmission electron microscopy (ssTEM) and focused ion beam scanning electron microscopy (FIB-SEM) are powerful alternatives but not widely used in plant sciences. Here, we present a method for the 3D reconstruction and volumetric extraction of plant cells based on FIB milling and compare the results with 3D reconstructions obtained with ssTEM. When compared to 3D reconstruction based on ssTEM, FIB-SEM delivered similar results. The data extracted in this study demonstrated that tobacco cells were larger (31410 µm3) than pumpkin cells (20697 µm3) and contained more chloroplasts (175 vs. 124), mitochondria (1317 vs. 291) and peroxisomes (745 vs. 79). While individual chloroplasts, mitochondria, peroxisomes were larger in pumpkin plants (25, 53, and 50%, respectively) they covered more total volume in tobacco plants (5390, 395, 374 µm3, respectively) due to their higher number per cell when compared to pumpkin plants (4762, 134, 59 µm3, respectively). While image acquisition with FIB-SEM was automated, software controlled, and less difficult than ssTEM, FIB milling was slower and sections could not be revised or re-imaged as they were destroyed by the ion beam. Nevertheless, the results in this study demonstrated that both, FIB-SEM and ssTEM, are powerful tools for the 3D reconstruction of and volumetric extraction from plant cells and that there were large differences in size, number, and organelle composition between pumpkin and tobacco cells.
Collapse
Affiliation(s)
- Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX, 76798, USA.
| | - Stefan Möstl
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Schubertstrasse 51, 8010, Graz, Austria
| | - Günther Zellnig
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Schubertstrasse 51, 8010, Graz, Austria
| |
Collapse
|
6
|
Zurzolo C. Tunneling nanotubes: Reshaping connectivity. Curr Opin Cell Biol 2021; 71:139-147. [PMID: 33866130 DOI: 10.1016/j.ceb.2021.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Tunneling nanotubes (TNTs), open membranous channels between connected cells, represent a novel direct way of communication between distant cells for the diffusion of various cellular material, including survival or death signals, genetic material, organelles, and pathogens. Their discovery prompted us to review our understanding of many physiological and pathological processes involving cellular communication but also allowed us to discover new mechanisms of communication at a distance. While this has enriched the field, it has also generated some confusion, as different TNT-like protrusions have been described, and it is not clear whether they have the same structure-function. Most studies have been based on low-resolution imaging methods, and one of the major problems is the inconsistency in demonstrating the capacity of these various connections to transfer material between cells belonging to different populations. This brief review examines the fundamental properties of TNTs. In adult tissues, TNTs are stimulated by different diseases, stresses, and inflammatory signals. 'Moreover', based on the similarity of the processes of development of synaptic spines and TNT formation, we argue that TNTs in the brain predate synaptic transmission, being instrumental in the orchestration of the immature neuronal circuit.
Collapse
Affiliation(s)
- Chiara Zurzolo
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015, Paris, France.
| |
Collapse
|