1
|
Kobayashi K, Yamamura M, Mikami B, Shiraishi A, Kumatani M, Satake H, Ono E, Umezawa T. Anthriscus sylvestris Deoxypodophyllotoxin Synthase Involved in the Podophyllotoxin Biosynthesis. PLANT & CELL PHYSIOLOGY 2023; 64:1436-1448. [PMID: 37948767 DOI: 10.1093/pcp/pcad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
Tetrahydrofuran ring formation from dibenzylbutyrolactone lignans is a key step in the biosynthesis of aryltetralin lignans including deoxypodophyllotoxin and podophyllotoxin. Previously, Fe(II)- and 2-oxoglutarate-dependent dioxygenase (2-ODD) from Podophyllum hexandrum (Himalayan mayapple, Berberidaceae) was found to catalyze the cyclization of a dibenzylbutyrolactone lignan, yatein, to give deoxypodophyllotoxin and designated as deoxypodophyllotoxin synthase (DPS). Recently, we reported that the biosynthesis of deoxypodophyllotoxin and podophyllotoxin evolved in a lineage-specific manner in phylogenetically unrelated plant species such as P. hexandrum and Anthriscus sylvestris (cow parsley, Apiaceae). Therefore, a comprehensive understanding of the characteristics of DPSs that catalyze the cyclization of yatein to deoxypodophyllotoxin in various plant species is important. However, for plant species other than P. hexandrum, the isolation of the DPS enzyme gene and the type of the enzyme, e.g. whether it is 2-ODD or another type of enzyme such as cytochrome P-450, have not been reported. In this study, we report the identification and characterization of A. sylvestris DPS (AsDPS). Phylogenetic analysis showed that AsDPS belonged to the 2-ODD superfamily and shared moderate amino acid sequence identity (40.8%) with P. hexandrum deoxypodophyllotoxin synthase (PhDPS). Recombinant protein assay indicated that AsDPS and PhDPS differ in terms of the selectivity of substrate enantiomers. Protein modeling using AlphaFold2 and site-directed mutagenesis indicated that the Tyr305 residue of AsDPS probably contributes to substrate recognition. This study advances our understanding of the podophyllotoxin biosynthetic pathway in A. sylvestris and provides new insight into 2-ODD involved in plant secondary (specialized) metabolism.
Collapse
Affiliation(s)
- Keisuke Kobayashi
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, 2-1, Minami-josanjima-cho, Tokushima, 770-8502 Japan
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Masato Kumatani
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| |
Collapse
|
2
|
Hayashi KI, Arai K, Aoi Y, Tanaka Y, Hira H, Guo R, Hu Y, Ge C, Zhao Y, Kasahara H, Fukui K. The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun 2021; 12:6752. [PMID: 34811366 PMCID: PMC8608799 DOI: 10.1038/s41467-021-27020-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/31/2021] [Indexed: 11/20/2022] Open
Abstract
Inactivation of the phytohormone auxin plays important roles in plant development, and several enzymes have been implicated in auxin inactivation. In this study, we show that the predominant natural auxin, indole-3-acetic acid (IAA), is mainly inactivated via the GH3-ILR1-DAO pathway. IAA is first converted to IAA-amino acid conjugates by GH3 IAA-amidosynthetases. The IAA-amino acid conjugates IAA-aspartate (IAA-Asp) and IAA-glutamate (IAA-Glu) are storage forms of IAA and can be converted back to IAA by ILR1/ILL amidohydrolases. We further show that DAO1 dioxygenase irreversibly oxidizes IAA-Asp and IAA-Glu into 2-oxindole-3-acetic acid-aspartate (oxIAA-Asp) and oxIAA-Glu, which are subsequently hydrolyzed by ILR1 to release inactive oxIAA. This work established a complete pathway for the oxidative inactivation of auxin and defines the roles played by auxin homeostasis in plant development.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan.
| | - Kazushi Arai
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Yuki Aoi
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Yuka Tanaka
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Hayao Hira
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Ruipan Guo
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Yun Hu
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Chennan Ge
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| |
Collapse
|