1
|
Subbiah R, Lin EY, Athirasala A, Romanowicz GE, Lin ASP, Califano JV, Guldberg RE, Bertassoni LE. Engineering of an Osteoinductive and Growth Factor-Free Injectable Bone-Like Microgel for Bone Regeneration. Adv Healthc Mater 2023; 12:e2200976. [PMID: 36808718 PMCID: PMC10978434 DOI: 10.1002/adhm.202200976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/30/2022] [Indexed: 02/22/2023]
Abstract
Bone autografts remain the gold standard for bone grafting surgeries despite having increased donor site morbidity and limited availability. Bone morphogenetic protein-loaded grafts represent another successful commercial alternative. However, the therapeutic use of recombinant growth factors has been associated with significant adverse clinical outcomes. This highlights the need to develop biomaterials that closely approximate the structure and composition of bone autografts, which are inherently osteoinductive and biologically active with embedded living cells, without the need for added supplements. Here, injectable growth factor-free bone-like tissue constructs are developed, that closely approximate the cellular, structural, and chemical composition of bone autografts. It is demonstrated that these micro-constructs are inherently osteogenic, and demonstrate the ability to stimulate mineralized tissue formation and regenerate bone in critical-sized defects in-vivo. Furthermore, the mechanisms that allow human mesenchymal stem cells (hMSCs) to be highly osteogenic in these constructs, despite the lack of osteoinductive supplements, are assessed, whereby Yes activated protein (YAP) nuclear localization and adenosine signaling appear to regulate osteogenic cell differentiation. The findings represent a step toward a new class of minimally invasive, injectable, and inherently osteoinductive scaffolds, which are regenerative by virtue of their ability to mimic the tissue cellular and extracellular microenvironment, thus showing promise for clinical applications in regenerative engineering.
Collapse
Affiliation(s)
- Ramesh Subbiah
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Edith Y Lin
- Department of Periodontics, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Genevieve E Romanowicz
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Angela S P Lin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Joseph V Califano
- Department of Periodontics, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
2
|
Nogueira LFB, Cruz MAE, de Melo MT, Maniglia BC, Caroleo F, Paolesse R, Lopes HB, Beloti MM, Ciancaglini P, Ramos AP, Bottini M. Collagen/κ-Carrageenan-Based Scaffolds as Biomimetic Constructs for In Vitro Bone Mineralization Studies. Biomacromolecules 2023; 24:1258-1266. [PMID: 36788678 DOI: 10.1021/acs.biomac.2c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Tissue engineering offers attractive strategies to develop three-dimensional scaffolds mimicking the complex hierarchical structure of the native bone. The bone is formed by cells incorporated in a molecularly organized extracellular matrix made of an inorganic phase, called biological apatite, and an organic phase mainly made of collagen and noncollagenous macromolecules. Although many strategies have been developed to replicate the complexity of bone at the nanoscale in vitro, a critical challenge has been to control the orchestrated process of mineralization promoted by bone cells in vivo and replicate the anatomical and biological properties of native bone. In this study, we used type I collagen to fabricate mineralized scaffolds mimicking the microenvironment of the native bone. The sulfated polysaccharide κ-carrageenan was added to the scaffolds to fulfill the role of noncollagenous macromolecules in the organization and mineralization of the bone matrix and cell adhesion. Scanning electron microscopy images of the surface of the collagen/κ-carrageenan scaffolds showed the presence of a dense and uniform network of intertwined fibrils, while images of the scaffolds' lateral sides showed the presence of collagen fibrils with a parallel alignment, which is characteristic of dense connective tissues. MC3T3-E1 osteoblasts were cultured in the collagen scaffolds and were viable after up to 7 days of culture, both in the absence and in the presence of κ-carrageenan. The presence of κ-carrageenan in the collagen scaffolds stimulated the maturation of the cells to a mineralizing phenotype, as suggested by the increased expression of key genes related to bone mineralization, including alkaline phosphatase (Alp), bone sialoprotein (Bsp), osteocalcin (Oc), and osteopontin (Opn), as well as the ability to mineralize the extracellular matrix after 14 and 21 days of culture. Taken together, the results described in this study shed light on the potential use of collagen/κ-carrageenan scaffolds to study the role of the structural organization of bone-mimetic synthetic matrices in cell function.
Collapse
Affiliation(s)
- Lucas Fabrício Bahia Nogueira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900 Ribeirão Preto, Brazil
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marcos Antônio Eufrásio Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900 Ribeirão Preto, Brazil
| | - Maryanne Trafani de Melo
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900 Ribeirão Preto, Brazil
| | - Bianca Chieregato Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900 Ribeirão Preto, Brazil
| | - Fabrizio Caroleo
- Department of Chemical Science and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Helena Bacha Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, Brazil
| | - Márcio M Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900 Ribeirão Preto, Brazil
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-900 Ribeirão Preto, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Sanford Burnham Prebys, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Chimerad M, Barazesh A, Zandi M, Zarkesh I, Moghaddam A, Borjian P, Chimehrad R, Asghari A, Akbarnejad Z, Khonakdar HA, Bagher Z. Tissue engineered scaffold fabrication methods for medical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mohammadreza Chimerad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, Florida, USA
| | - Alireza Barazesh
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mojgan Zandi
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Ibrahim Zarkesh
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armaghan Moghaddam
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Pouya Borjian
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, Florida, USA
| | - Rojan Chimehrad
- Department of Biological Sciences, Islamic Azad University Tehran Medical Branch, Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, School of Medicine, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center and Department, School of Medicine, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Zohreh Bagher
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head and Neck Research Center and Department, School of Medicine, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Xu M, Liu T, Qin M, Cheng Y, Lan W, Niu X, Wei Y, Hu Y, Lian X, Zhao L, Chen S, Chen W, Huang D. Bone-like hydroxyapatite anchored on alginate microspheres for bone regeneration. Carbohydr Polym 2022; 287:119330. [DOI: 10.1016/j.carbpol.2022.119330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
|
5
|
Laboy-López S, Méndez Fernández PO, Padilla-Zayas JG, Nicolau E. Bioactive Cellulose Acetate Electrospun Mats as Scaffolds for Bone Tissue Regeneration. Int J Biomater 2022; 2022:3255039. [PMID: 35154326 PMCID: PMC8837436 DOI: 10.1155/2022/3255039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
In the last decades, cell-based approaches for bone tissue engineering (BTE) have relied on using models that cannot replicate the complexity of the bone microenvironment. There is an ongoing amount of research on scaffold development responding to the need for feasible materials that can mimic the bone extracellular matrix (ECM) and aid bone tissue regeneration (BTR). In this work, a porous cellulose acetate (CA) fiber mat was developed using the electrospinning technique and the mats were chemically modified to bioactivate their surface and promote osteoconduction and osteoinduction. The mats were characterized using FTIR and SEM/EDS to validate the chemical modifications and assess their structural integrity. By coupling adhesive peptides KRSR, RGD, and growth factor BMP-2, the fiber mats were bioactivated, and their induced biological responses were evaluated by employing immunocytochemical (ICC) techniques to study the adhesion, proliferation, and differentiation of premature osteoblast cells (hFOB 1.19). The biological assessment revealed that at short culturing periods of 48 hours and 7 days, the presence of the peptides was significant for proliferation and adhesion, whereas at longer culture times of 14 days, it had no significant effect on differentiation and maturation of the osteogenic progenitor cells. Based on the obtained results, it is thus concluded that the CA porous fiber mats provide a promising surface morphology that is both biocompatible and can be rendered bioactive upon the addition of osteogenic peptides to favor osteoconduction leading to new tissue formation.
Collapse
Affiliation(s)
- Simara Laboy-López
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 University Ave. 1701, San Juan 00925, USA
- Molecular Science Research Center, University of Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan 00931-3346, USA
| | - Pedro O. Méndez Fernández
- Molecular Science Research Center, University of Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan 00931-3346, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan 00931-3346, USA
| | - Jorge G. Padilla-Zayas
- Molecular Science Research Center, University of Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan 00931-3346, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan 00931-3346, USA
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 University Ave. 1701, San Juan 00925, USA
- Molecular Science Research Center, University of Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan 00931-3346, USA
| |
Collapse
|
6
|
Subbiah R, Balbinot GDS, Athirasala A, Collares FM, Sereda G, Bertassoni LE. Nanoscale mineralization of cell-laden methacrylated gelatin hydrogels using calcium carbonate-calcium citrate core-shell microparticles. J Mater Chem B 2021; 9:9583-9593. [PMID: 34779469 DOI: 10.1039/d1tb01673c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conventional biomaterials developed for bone regeneration fail to fully recapitulate the nanoscale structural organization and complex composition of the native bone microenvironment. Therefore, despite promoting osteogenic differentiation of stem cells, they fall short of providing the structural, biochemical, and mechanical stimuli necessary to drive osteogenesis for bone regeneration and function. To address this, we have recently developed a novel strategy to engineer bone-like tissue using a biomimetic approach to achieve rapid and controlled nanoscale mineralization of a cell-laden matrix in the presence of osteopontin, a non-collagenous protein, and a supersaturated solution of calcium and phosphate medium. Here, we build on this approach to engineer bone regeneration scaffolds comprising methacrylated gelatin (GelMA) hydrogels incorporated with calcium citrate core-shell microparticles as a sustained and reliable source of calcium ions for in situ mineralization. We demonstrate successful biomineralization of GelMA hydrogels by embedded calcium carbonate-calcium citrate core-shell microparticles with the resultant mineral chemistry, structure, and organization reminiscent of that of native bone. The biomimetic mineralization was further shown to promote osteogenic differentiation of encapsulated human mesenchymal stem cells even in the absence of other exogenous osteogenic induction factors. Ultimately, by combining the superior biological response engendered by biomimetic mineralization with the intrinsic tissue engineering advantages offered by GelMA, such as biocompatibility, biodegradability, and printability, we envision that our system offers great potential for bone regeneration efforts.
Collapse
Affiliation(s)
- Ramesh Subbiah
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR 97201, USA
| | - Gabriela de Souza Balbinot
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Avathamsa Athirasala
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - Fabricio Mezzomo Collares
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Grigoriy Sereda
- Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA.
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
| |
Collapse
|
7
|
Nogueira LFB, Maniglia BC, Buchet R, Millán JL, Ciancaglini P, Bottini M, Ramos AP. Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering. J Biomed Mater Res B Appl Biomater 2021; 110:967-983. [PMID: 34793621 DOI: 10.1002/jbm.b.34967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/05/2021] [Accepted: 10/30/2021] [Indexed: 12/22/2022]
Abstract
The bones can be viewed as both an organ and a material. As an organ, the bones give structure to the body, facilitate skeletal movement, and provide protection to internal organs. As a material, the bones consist of a hybrid organic/inorganic three-dimensional (3D) matrix, composed mainly of collagen, noncollagenous proteins, and a calcium phosphate mineral phase, which is formed and regulated by the orchestrated action of a complex array of cells including chondrocytes, osteoblasts, osteocytes, and osteoclasts. The interactions between cells, proteins, and minerals are essential for the bone functions under physiological loading conditions, trauma, and fractures. The organization of the bone's organic and inorganic phases stands out for its mechanical and biological properties and has inspired materials research. The objective of this review is to fill the gaps between the physical and biological characteristics that must be achieved to fabricate scaffolds for bone tissue engineering with enhanced performance. We describe the organization of bone tissue highlighting the characteristics that have inspired the development of 3D cell-laden collagenous scaffolds aimed at replicating the mechanical and biological properties of bone after implantation. The role of noncollagenous macromolecules in the organization of the collagenous matrix and mineralization ability of entrapped cells has also been reviewed. Understanding the modulation of cell activity by the extracellular matrix will ultimately help to improve the biological performance of 3D cell-laden collagenous scaffolds used for bone regeneration and repair as well as for in vitro studies aimed at unravelling physiological and pathological processes occurring in the bone.
Collapse
Affiliation(s)
- Lucas Fabricio Bahia Nogueira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil.,Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Bianca C Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Rene Buchet
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| |
Collapse
|