1
|
Karabinos A. The long protostomic-type cytoplasmic intermediate filament (cIF) protein in Branchiostoma supports the phylogenetic transition between the protostomic- and the chordate-type cIFs. PROTOPLASMA 2023; 260:1493-1500. [PMID: 37209173 DOI: 10.1007/s00709-023-01865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
We identified 23 and 20 cytoplasmic IF (cIF) genes in the two Branchiostoma belcheri and Branchiostoma lanceolatum cephalochordates, respectively. Combining these results with earlier data on the related Branchiostoma floridae, the following conclusions can be drawn. First, the Branchiostoma N4 protein with a long lamin-like coil 1B segment is the only protostomic-type cIF found so far in any analysed chordate or vertebrate organism. Second, Branchiostoma is the only organism known so far containing both the long protostomic- and the short chordate-prototypes of cIFs. This finding provides so far missing molecular evidence for the phylogenetic transition between the protostomic- and the chordate-type IF sequences at the base of the cephalochordates and vertebrates. Third, this finding also brings some support for another hypothesis, that the long protostomic-type cIF is subjected to evolutionary constraints in order to preclude inappropriate interactions with lamin and that the latter complexes might be prevented by a several heptad-long rod deletion, which released the selective constraints on it and promoted, at least in part, its expansion in nematodes, cephalochordates, and in vertebrates. Finally, here-presented data confirmed our previous results that cephalochordates do not have any vertebrate type III or type IV IF homolog.
Collapse
Affiliation(s)
- Anton Karabinos
- Medirex, a.s., Kosice, Magnezitarska 2/C, 04013, Kosice, Slovakia.
| |
Collapse
|
2
|
Xia L, Li C, Zhao Y, Zhang W, Hu C, Qu Y, Li H, Yan J, Zhou K, Li P. Expression analysis of alpha keratins and corneous beta-protein genes during embryonic development of Gekko japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101116. [PMID: 37567027 DOI: 10.1016/j.cbd.2023.101116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Epidermal appendages of birds and reptiles, including claws, feathers, scales, and setae, are primarily composed of alpha keratins (KRTs) and corneous beta-proteins (CBPs). A comprehensive and systematic knowledge of KRTs and CBPs in Schlegel's Japanese gecko (Gekko japonicus) is still lacking. In this study, 22 candidate Gecko japonicus keratin (GjKRT) family genes (12 type I genes, 10 type II genes) were identified in the G. japonicus genome. The majority of GjKRT genes across various subgroups had undergone a prolonged and highly conservative evolutionary process. Through a combination of morphological observation, RNA-seq analysis, and qRT-PCR assay, it was possible to discern the dynamic alterations in the expression of GjKRTs and Gecko japonicus corneous beta-proteins genes (GjCBPs). These findings strongly indicate that GjKRTs gradually accumulate to constitute an α-layer, which is subsequently succeeded by the formation of the corneous beta layer containing GjCBPs at late stages (40-42) of embryonic development. The epidermal appendages in G. japonicus may result from the joint accumulation of KRTs and CBPs, with stages 40-42 being critical for their development. These findings provide novel insights into KRTs and CBPs of G. japonicus and offer a foundation for investigating the functions of GjKRT and GjCBP gene families. Furthermore, this knowledge contributes to unraveling the molecular mechanisms underlying the formation of epidermal appendages in G. japonicus.
Collapse
Affiliation(s)
- Longjie Xia
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Chao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Yue Zhao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Wenyi Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Yanfu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
3
|
Litman T, Stein WD. Ancient lineages of the keratin-associated protein (KRTAP) genes and their co-option in the evolution of the hair follicle. BMC Ecol Evol 2023; 23:7. [PMID: 36941546 PMCID: PMC10029157 DOI: 10.1186/s12862-023-02107-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
BLAST searches against the human genome showed that of the 93 keratin-associated proteins (KRTAPs) of Homo sapiens, 53 can be linked by sequence similarity to an H. sapiens metallothionein and 16 others can be linked similarly to occludin, while the remaining KRTAPs can themselves be linked to one or other of those 69 directly-linked proteins. The metallothionein-linked KRTAPs comprise the high-sulphur and ultrahigh-sulphur KRTAPs and are larger than the occludin-linked set, which includes the tyrosine- and glycine-containing KRTAPs. KRTAPs linked to metallothionein appeared in increasing numbers as evolution advanced from the deuterostomia, where KRTAP-like proteins with strong sequence similarity to their mammalian congeners were found in a sea anemone and a starfish. Those linked to occludins arose only with the later-evolved mollusca, where a KRTAP homologous with its mammalian congener was found in snails. The presence of antecedents of the mammalian KRTAPs in a starfish, a sea anemone, snails, fish, amphibia, reptiles and birds, all of them animals that lack hair, suggests that some KRTAPs may have a physiological role beyond that of determining the characteristics of hair fibres. We suggest that homologues of these KRTAPs found in non-hairy animals were co-opted by placodes, formed by the ectodysplasin pathway, to produce the first hair-producing cells, the trichocytes of the hair follicles.
Collapse
Affiliation(s)
- Thomas Litman
- Department of Immunology and Microbiology, University of Copenhagen, Mærsk Tower 07-12-70 Nørre Allé 14, 2200, Copenhagen N, Denmark
| | - Wilfred D Stein
- Silberman Institute of Life Sciences, Hebrew University, 91904, Jerusalem, Israel.
| |
Collapse
|
4
|
Parry DAD, Winter DJ. Keratin intermediate filament chains in the European common wall lizard (Podarcis muralis) and a potential keratin filament crosslinker. J Struct Biol 2021; 213:107793. [PMID: 34481988 DOI: 10.1016/j.jsb.2021.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
On the basis of sequence homology with mammalian α-keratins, and on the criteria that the coiled-coil segments and central linker in the rod domain of these molecules must have conserved lengths if they are to assemble into viable intermediate filaments, a total of 28 Type I and Type II keratin intermediate filament chains (KIF) have been identified from the genome of the European common wall lizard (Podarcis muralis). Using the same criteria this number may be compared to 33 found here in the green anole lizard (Anole carolinensis) and 25 in the tuatara (Sphenodon punctatus). The Type I and Type II KIF genes in the wall lizard fall in clusters on chromosomes 13 and 2 respectively. Although some differences occur in the terminal domains in the KIF chains of the two lizards and tuatara, the similarities between key indicator residues - cysteine, glycine and proline - are significant. The terminal domains of the KIF chains in the wall lizard also contain sequence repeats commonly based on glycine and large apolar residues and would permit the fine tuning of physical properties when incorporated within the intermediate filaments. The H1 domain in the Type II chain is conserved across the lizards, tuatara and mammals, and has been related to its role in assembly at the 2-4 molecule level. A KIF-like chain (K80) with an extensive tail domain comprised of multiple tandem repeats has been identified as having a potential filament-crosslinking role.
Collapse
Affiliation(s)
- David A D Parry
- School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.
| | - David J Winter
- School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
5
|
Parry DAD. Structures of the ß-Keratin Filaments and Keratin Intermediate Filaments in the Epidermal Appendages of Birds and Reptiles (Sauropsids). Genes (Basel) 2021; 12:591. [PMID: 33920614 PMCID: PMC8072682 DOI: 10.3390/genes12040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
The epidermal appendages of birds and reptiles (the sauropsids) include claws, scales, and feathers. Each has specialized physical properties that facilitate movement, thermal insulation, defence mechanisms, and/or the catching of prey. The mechanical attributes of each of these appendages originate from its fibril-matrix texture, where the two filamentous structures present, i.e., the corneous ß-proteins (CBP or ß-keratins) that form 3.4 nm diameter filaments and the α-fibrous molecules that form the 7-10 nm diameter keratin intermediate filaments (KIF), provide much of the required tensile properties. The matrix, which is composed of the terminal domains of the KIF molecules and the proteins of the epidermal differentiation complex (EDC) (and which include the terminal domains of the CBP), provides the appendages, with their ability to resist compression and torsion. Only by knowing the detailed structures of the individual components and the manner in which they interact with one another will a full understanding be gained of the physical properties of the tissues as a whole. Towards that end, newly-derived aspects of the detailed conformations of the two filamentous structures will be discussed and then placed in the context of former knowledge.
Collapse
Affiliation(s)
- David A D Parry
- School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|