1
|
Van Blerkom P, Bezault A, Sauvanet C, Hanein D, Volkmann N. The GoldX Fiducial Eraser. Int J Mol Sci 2024; 25:7442. [PMID: 39000548 PMCID: PMC11242485 DOI: 10.3390/ijms25137442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Gold nanoparticles with sizes in the range of 5-15 nm are a standard method of providing fiducial markers to assist with alignment during reconstruction in cryogenic electron tomography. However, due to their high electron density and resulting contrast when compared to standard cellular or biological samples, they introduce artifacts such as streaking in the reconstructed tomograms. Here, we demonstrate a tool that automatically detects these nanoparticles and suppresses them by replacing them with a local background as a post-processing step, providing a cleaner tomogram without removing any sample relevant information or introducing new artifacts or edge effects from uniform density replacements.
Collapse
Affiliation(s)
- Peter Van Blerkom
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Armel Bezault
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75724 Paris, France
| | - Cécile Sauvanet
- Institut de Biologie Intégrative de la Cellule, CNRS CEA, Université Paris Saclay, 91190 Gif-sur-Yvette, France
| | - Dorit Hanein
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Biological Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Niels Volkmann
- Department of Biological Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Dow LP, Gaietta G, Kaufman Y, Swift MF, Lemos M, Lane K, Hopcroft M, Bezault A, Sauvanet C, Volkmann N, Pruitt BL, Hanein D. Morphological control enables nanometer-scale dissection of cell-cell signaling complexes. Nat Commun 2022; 13:7831. [PMID: 36539423 PMCID: PMC9768166 DOI: 10.1038/s41467-022-35409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Protein micropatterning enables robust control of cell positioning on electron-microscopy substrates for cryogenic electron tomography (cryo-ET). However, the combination of regulated cell boundaries and the underlying electron-microscopy substrate (EM-grids) provides a poorly understood microenvironment for cell biology. Because substrate stiffness and morphology affect cellular behavior, we devised protocols to characterize the nanometer-scale details of the protein micropatterns on EM-grids by combining cryo-ET, atomic force microscopy, and scanning electron microscopy. Measuring force displacement characteristics of holey carbon EM-grids, we found that their effective spring constant is similar to physiological values expected from skin tissues. Despite their apparent smoothness at light-microscopy resolution, spatial boundaries of the protein micropatterns are irregular at nanometer scale. Our protein micropatterning workflow provides the means to steer both positioning and morphology of cell doublets to determine nanometer details of punctate adherens junctions. Our workflow serves as the foundation for studying the fundamental structural changes governing cell-cell signaling.
Collapse
Affiliation(s)
- Liam P. Dow
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Guido Gaietta
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA
| | - Yair Kaufman
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Mark F. Swift
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA
| | - Moara Lemos
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Kerry Lane
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Matthew Hopcroft
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Armel Bezault
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Cécile Sauvanet
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Niels Volkmann
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA ,Institut Pasteur, Université de Paris, CNRS UMR3528, Structural Image Analysis Unit, Paris, France
| | - Beth L. Pruitt
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Dorit Hanein
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA ,grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France ,grid.133342.40000 0004 1936 9676Present Address: Department of Chemistry and Biochemistry, and of Biomedical Engineering, University of California, Santa Barbara, CA USA
| |
Collapse
|
3
|
Gaietta G, Kai F, Swift MF, Weaver VM, Volkmann N, Hanein D. Novel cryo-tomography workflow reveals nanometer-scale responses of epithelial cells to matrix stiffness and dimensionality. Mol Biol Cell 2022; 33:br28. [PMID: 36287913 PMCID: PMC9727794 DOI: 10.1091/mbc.e22-03-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Matrix stiffness and dimensionality have been shown to be major determinants of cell behavior. However, a workflow for examining nanometer-scale responses of the associated molecular machinery is not available. Here, we describe a comprehensive, quantitative workflow that permits the analysis of cells responding to mechanical and dimensionality cues in their native state at nanometer scale by cryogenic electron tomography. Using this approach, we quantified distinct cytoskeletal nanoarchitectures and vesicle phenotypes induced in human mammary epithelial cells in response to stiffness and dimensionality of reconstituted basement membrane. Our workflow closely recapitulates the microenvironment associated with acinar morphogenesis and identified distinct differences in situ at nanometer scale. Using drug treatment, we showed that molecular events and nanometer-scale rearrangements triggered by engagement of apical cell receptors with reconstituted basement membrane correspond to changes induced by reduction of cortical tension. Our approach is fully adaptable to any kind of stiffness regime, extracellular matrix composition, and drug treatment.
Collapse
Affiliation(s)
- Guido Gaietta
- Scintillon Institute, San Diego, CA 92121,*Address correspondence to: Dorit Hanein (); Guido Gaietta (); Niels Volkmann ()
| | - Fuiboon Kai
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143
| | | | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143
| | - Niels Volkmann
- Scintillon Institute, San Diego, CA 92121,Structural Image Analysis Unit, Université de Paris Cité, F-75015 Paris, France,*Address correspondence to: Dorit Hanein (); Guido Gaietta (); Niels Volkmann ()
| | - Dorit Hanein
- Scintillon Institute, San Diego, CA 92121,Structural Studies of Macromolecular Machines in Cellulo Unit, Institut Pasteur, CNRS UMR3528, Université de Paris Cité, F-75015 Paris, France,*Address correspondence to: Dorit Hanein (); Guido Gaietta (); Niels Volkmann ()
| |
Collapse
|
4
|
Kai F, Ou G, Tourdot RW, Stashko C, Gaietta G, Swift MF, Volkmann N, Long AF, Han Y, Huang HH, Northey JJ, Leidal AM, Viasnoff V, Bryant DM, Guo W, Wiita AP, Guo M, Dumont S, Hanein D, Radhakrishnan R, Weaver VM. ECM dimensionality tunes actin tension to modulate endoplasmic reticulum function and spheroid phenotypes of mammary epithelial cells. EMBO J 2022; 41:e109205. [PMID: 35880301 PMCID: PMC9434103 DOI: 10.15252/embj.2021109205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Patient-derived organoids and cellular spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a reconstituted basement membrane in three dimensions (3D) supports the polarized, stress resilient tissue phenotype of mammary epithelial spheroids. Cells interacting with reconstituted basement membrane in 3D had reduced levels of total and actin-associated filamin and decreased cortical actin tension that increased plasma membrane protrusions to promote negative plasma membrane curvature and plasma membrane protein associations linked to protein secretion. By contrast, cells engaging a reconstituted basement membrane in 2D had high cortical actin tension that forced filamin unfolding and endoplasmic reticulum (ER) associations. Enhanced filamin-ER interactions increased levels of PKR-like ER kinase effectors and ER-plasma membrane contact sites that compromised calcium homeostasis and diminished cell viability. Consequently, cells with decreased cortical actin tension had reduced ER stress and survived better. Consistently, cortical actin tension in cellular spheroids regulated polarized basement membrane membrane deposition and sensitivity to exogenous stress. The findings implicate cortical actin tension-mediated filamin unfolding in ER function and underscore the importance of tissue mechanics in organoid homeostasis.
Collapse
Affiliation(s)
- FuiBoon Kai
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Guanqing Ou
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Richard W Tourdot
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Connor Stashko
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | | - Niels Volkmann
- Scintillon InstituteSan DiegoCAUSA
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut PasteurUniversité Paris Cité, CNRS UMR3528ParisFrance
| | - Alexandra F Long
- Tetrad Graduate ProgramUniversity of California San FranciscoSan FranciscoCAUSA
- Department of Bioengineering and Therapeutic SciencesDepartment of Cell & Tissue Biology, University of California San FranciscoSan FranciscoCAUSA
| | - Yulong Han
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Hector H Huang
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Jason J Northey
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Andrew M Leidal
- Department of PathologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Virgile Viasnoff
- Mechanobiology InstituteNational University of SingaporeSingapore CitySingapore
| | | | - Wei Guo
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Arun P Wiita
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Ming Guo
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Sophie Dumont
- Department of Bioengineering and Therapeutic SciencesDepartment of Cell & Tissue Biology, University of California San FranciscoSan FranciscoCAUSA
- Chan Zuckerberg BiohubSan FranciscoCAUSA
| | - Dorit Hanein
- Scintillon InstituteSan DiegoCAUSA
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut PasteurUniversité Paris Cité, CNRS UMR3528ParisFrance
| | - Ravi Radhakrishnan
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
- Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCAUSA
- UCSF Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|