1
|
Thermo-reversible in situ forming implant with nanostructured lipid carriers (NLC) as a delivery system for the administration of estradiol valerate. Drug Deliv Transl Res 2020; 10:1393-1402. [PMID: 31942699 DOI: 10.1007/s13346-019-00704-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A thermo-reversible in situ forming implant, based on the combination of Pluronic® F-127 and Pluronic® F-68 with nanostructured lipid carriers (NLC), was formulated with the aim of achieving the sustained release of estradiol valerate (EV). EV-loaded NLC, prepared by the hot high-pressure homogenization technique, presented an entrapment efficiency of 90 ± 2.9 %, a particle size (PS) of 122 ± 11.2 nm, a polydispersity index (PDI) of 0.344 ± 0.07, and a zeta potential (ZP) of - 10.5 ± 1.3 mV. Once obtained, NLC were then included in a thermo-reversible gel (EV-loaded NLC gel), which was characterized by its rheological behavior, gelation temperature, and injectability. The in vitro release tests showed that the EV-loaded NLC gel delayed the release significantly, in comparison with a solution of the drug and with the EV-loaded NLC. The EV-loaded NLC gel and a commercially available suspension containing estradiol were administered parenterally to rabbits. A 16.8-fold greater AUC and a 40-fold higher Cmax were obtained with the EV-loaded NLC gel, compared to the commercial suspension. A rapid initial release of EV in vivo, from the EV-loaded NLC gel, suggests that it is necessary to adjust the ratio of the copolymers or to include in the gel an additive that improves gelation time and gel strength, in order to achieve a sustained release. An interesting observation was that the in vitro profile, which has a three-phase behavior, coincides with what was observed in the in vivo study. Graphical abstract.
Collapse
|
2
|
Abstract
DNA-damaging agents, such as methylating agents, chloroethylating agents and platinum-based agents, have been extensively used as anticancer drugs. However, the side effects, high toxicity, lack of selectivity and resistance severely limit their clinical applications. In recent years, a strategy combining a DNA-damaging agent with a bioactive molecule (e.g., enzyme inhibitors) or carrier (e.g., steroid hormone and DNA intercalators) to produce a new 'combi-molecule' with improved efficacy or selectivity has been attempted to overcome these drawbacks. The combi-molecule simultaneously acts on two targets and is expected to possess better potency than the parent compounds. Many studies have shown DNA-damaging combi-molecules exhibiting excellent anticancer activity in vitro and in vivo. This review focuses on the development of combi-molecules, which possess increased DNA-damaging potency, anticancer efficacy and tumor selectivity and reduced side reactions than the parent compounds. The future opportunities and challenges in the discovery of combi-molecules were also discussed.
Collapse
|
3
|
Kue CS, Kamkaew A, Burgess K, Kiew LV, Chung LY, Lee HB. Small Molecules for Active Targeting in Cancer. Med Res Rev 2016; 36:494-575. [PMID: 26992114 DOI: 10.1002/med.21387] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/29/2022]
Abstract
For the purpose of this review, active targeting in cancer research encompasses strategies wherein a ligand for a cell surface receptor expressed on tumor cells is used to deliver a cytotoxic or imaging cargo. This area of research is more than two decades old, but in those 20 and more years, how many receptors have been studied extensively? What kinds of the ligands are used for active targeting? Are they mostly naturally occurring molecules such as folic acid, or synthetic substances developed in campaigns for medicinal chemistry efforts? This review outlines the most important receptor or ligand combinations that have been used in active targeting to answer these questions, and therefore to address the most important one of all: is research in active targeting affording diminishing returns, or is this an area for which the potential far exceeds progress made so far?
Collapse
Affiliation(s)
- Chin S Kue
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anyanee Kamkaew
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Lik V Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lip Y Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hong B Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Lainé AL, Adriaenssens E, Vessières A, Jaouen G, Corbet C, Desruelles E, Pigeon P, Toillon RA, Passirani C. The in vivo performance of ferrocenyl tamoxifen lipid nanocapsules in xenografted triple negative breast cancer. Biomaterials 2013; 34:6949-56. [DOI: 10.1016/j.biomaterials.2013.05.065] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/24/2013] [Indexed: 01/31/2023]
|
5
|
Folate-Targeted Nanoparticles Based on Albumin and Albumin/Alginate Mixtures as Controlled Release Systems of Tamoxifen: Synthesis and In Vitro Characterization. Pharm Res 2013; 31:182-93. [DOI: 10.1007/s11095-013-1151-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
|
6
|
Martínez A, Arana P, Fernández A, Olmo R, Teijón C, Blanco M. Synthesis and characterisation of alginate/chitosan nanoparticles as tamoxifen controlled delivery systems. J Microencapsul 2013; 30:398-408. [DOI: 10.3109/02652048.2012.746747] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Dao KL, Hanson RN. Targeting the Estrogen Receptor using Steroid–Therapeutic Drug Conjugates (Hybrids). Bioconjug Chem 2012; 23:2139-58. [DOI: 10.1021/bc300378e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kinh-Luan Dao
- Department of Chemistry and Chemical Biology Department, Northeastern University, 360 Huntington Avenue, Boston
Massachusetts 02115-50000
| | - Robert N. Hanson
- Department of Chemistry and Chemical Biology Department, Northeastern University, 360 Huntington Avenue, Boston
Massachusetts 02115-50000
| |
Collapse
|
8
|
Martínez A, Muñiz E, Iglesias I, Teijón J, Blanco M. Enhanced preclinical efficacy of tamoxifen developed as alginate–cysteine/disulfide bond reduced albumin nanoparticles. Int J Pharm 2012; 436:574-81. [DOI: 10.1016/j.ijpharm.2012.07.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 12/11/2022]
|
9
|
Martínez A, Benito-Miguel M, Iglesias I, Teijón JM, Blanco MD. Tamoxifen-loaded thiolated alginate-albumin nanoparticles as antitumoral drug delivery systems. J Biomed Mater Res A 2012; 100:1467-76. [PMID: 22396108 DOI: 10.1002/jbm.a.34051] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/08/2011] [Accepted: 11/29/2011] [Indexed: 11/10/2022]
Abstract
Nanoparticles based on disulfide bond reduced bovine serum albumin and thiolated alginate (alginate-cysteine conjugate) have been prepared by coacervation method and have been loaded with tamoxifen (TMX). The TMX load into the nanoparticles was optimized (4-6 μg/mg NP) by freeze-drying the systems before the loading procedure. Maximum TMX release (45-52%) took place between 2 and 25 h. Cytotoxicity of unloaded nanoparticles in MCF-7 and HeLa cells was not observed, although a small decrease in viability took place at very high concentration. Cell uptake of nanoparticles occurred in both cell types and the presence of polysaccharide in the nanoparticle composition allowed a better interaction with cells. The administration of 10 μM TMX by TMX-nanoparticles was effective in both cellular lines, and the effect of the drug-loaded systems on MCF-7 cell cycle showed the efficacy of the TMX-loaded nanoparticles.
Collapse
Affiliation(s)
- A Martínez
- Group of Polymeric Materials for the Controlled Release of Bioactive Compounds in Biomedicine, Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | | | |
Collapse
|
10
|
Abstract
The steroidal receptors play a key role in protein synthesis and maintain the homeostasis in normal and diseased state, including tumorigenesis at the target tissues when overactivated. Thus steroidal receptors may act as potential targets for selective delivery of different therapeutic agents as they are overexpressed by a number of endocrinal tumors. The selective delivery of these agents may be a better treatment strategy for endocrinal cancer as it may also result in cytosolic and nuclear delivery of cytotoxic agents. In this review, the targeting potential of steroidal receptors for the drug or bioactive(s) delivery is discussed. The ligands that have been proven to be effective for specific steroidal receptors can be used as vectors for carrying the drug or drug-delivery system to the desired site of drug action in an optimum concentration. This strategy will not only minimize the undesired side effects associated with nonspecific delivery of drug, but will also maximize the drug utilization. Ligand-conjugated liposomes as a carrier of bioactives prevent passive diffusion of the encapsulated drug to normal cells, increase the time of circulation and reduce the undesirable side effects of a drug.
Collapse
|
11
|
Kumar S, Lata K, Mukhopadhyay S, Mukherjee TK. Role of estrogen receptors in pro-oxidative and anti-oxidative actions of estrogens: a perspective. Biochim Biophys Acta Gen Subj 2010; 1800:1127-35. [PMID: 20434525 DOI: 10.1016/j.bbagen.2010.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/23/2010] [Accepted: 04/21/2010] [Indexed: 01/07/2023]
Abstract
BACKGROUND Estrogens are steroid hormones responsible for the primary and secondary sexual characteristics in females. While pre-menopausal women use estrogens as the main constituents of contraceptive pills, post-menopausal women use the same for Hormone Replacement Therapy. Estrogens produce reactive oxygen species by increasing mitochondrial activity and redox cycling of estrogen metabolites. The phenolic hydroxyl group present at the C3 position of the A ring of estrogens can get oxidized either by accepting an electron or by losing a proton. Thus, estrogens might act as pro-oxidant in some settings, resulting in complicated non-communicable diseases, namely, cancer and cardiovascular disorders. However, in some other settings the phenolic hydroxyl group of estrogens may be responsible for the anti-oxidative beneficial functions and thus protect against cardiovascular and neurodegenerative diseases. SCOPE OF REVIEW To date, no single review article has mentioned the implication of estrogen receptors in both the pro-oxidative and anti-oxidative actions of estrogens. MAJOR CONCLUSION The controversial role of estrogens as pro-oxidant or anti-oxidant is largely dependent on cell types, ratio of different types of estrogen receptors present in a particular cell and context specificity of the estrogen hormone responses. Both pro-oxidant and anti-oxidant effects of estrogens might involve different estrogen receptors that can have either genomic or non-genomic action to manifest further hormonal response. GENERAL SIGNIFICANCE This review highlights the role of estrogen receptors in the pro-oxidative and anti-oxidative actions of estrogens with special emphasis on neuronal cells.
Collapse
Affiliation(s)
- Sukhdeep Kumar
- Department of Biology, Indiana Institute of Science Eduaction and Research (IISER), Transit Campus, Chandigarh, India
| | | | | | | |
Collapse
|
12
|
Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 2009; 87:212-51. [PMID: 19395337 DOI: 10.1016/j.pneurobio.2008.12.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/11/2008] [Accepted: 12/17/2008] [Indexed: 12/12/2022]
Abstract
Peptide and protein (P/P) drugs have been identified as showing great promises for the treatment of various neurodegenerative diseases. A major challenge in this regard, however, is the delivery of P/P drugs over the blood-brain barrier (BBB). Intense research over the last 25 years has enabled a better understanding of the cellular and molecular transport mechanisms at the BBB, and several strategies for enhanced P/P drug delivery over the BBB have been developed and tested in preclinical and clinical-experimental research. Among them, technology-based approaches (comprising functionalized nanocarriers and liposomes) and pharmacological strategies (such as the use of carrier systems and chimeric peptide technology) appear to be the most promising ones. This review combines a comprehensive overview on the current understanding of the transport mechanisms at the BBB with promising selected strategies published so far that can be applied to facilitate enhanced P/P drug delivery over the BBB.
Collapse
|
13
|
Hirano S, Furutama D, Hanafusa T. Physiologically high concentrations of 17β-estradiol enhance NF-κB activity in human T cells. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1465-71. [PMID: 17194723 DOI: 10.1152/ajpregu.00778.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen has diverse effects on inflammation and immune responses. That pregnancy is associated with remission of some autoimmune diseases and exacerbation of others suggests that physiological fluctuation in estrogen levels could affect the immune responses in humans. However, the molecular basis for these phenomena is poorly understood. We hypothesized that fluctuations of estrogen levels modulate intracellular signaling for immune responses via estrogen receptors (ERs). In reporter assays, 17β-estradiol (E2) at a physiologically high concentration increased the activity of NF-κB in Jurkat cells stimulated by PMA/ionomycin or TNF-α. Overexpression and RNA interference experiments suggested that the effects were mediated through ERβ. Immunoprecipitation assay showed that both ERα and ERβ are directly associated with NF-κB in the cell nucleus. Using chromatin immunoprecipitation assay, we confirmed that ERα and ERβ associated with NF-κB and steroid hormone coactivators at the promoter region of NF-κB regulated gene. Considering that NF-κB regulates the expression of various genes essential for cell growth and death, estrogen could regulate the fate of T cells by affecting the activity of NF-κB. To determine whether E2 alters the fate of T cells, we investigated E2 actions on T cell apoptosis, a well-known NF-κB-mediated phenomenon. E2 increased apoptosis of Jurkat cells and decreased that of human peripheral blood T cells. Our results indicate that E2 at a physiologically high concentration modulates NF-κB signaling in human T cells via ERβ and affects T cell survival, suggesting that these actions may underlie the gender differences in autoimmune diseases.
Collapse
Affiliation(s)
- Suzue Hirano
- First Department of Internal Medicine, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki 569-8686, Japan
| | | | | |
Collapse
|
14
|
Renoir JM, Stella B, Ameller T, Connault E, Opolon P, Marsaud V. Improved anti-tumoral capacity of mixed and pure anti-oestrogens in breast cancer cell xenografts after their administration by entrapment in colloidal nanosystems. J Steroid Biochem Mol Biol 2006; 102:114-27. [PMID: 17056251 DOI: 10.1016/j.jsbmb.2006.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anti-oestrogens (AEs) are currently used for treating hormone-dependent breast cancers. They specifically bind to oestrogen receptors (ERs) and inhibit their transactivation capacity. However, ERs are present in various other tissues in which AEs may have either a beneficial or detrimental action. AE administration via systems targeting breast tumours may be an important therapeutic improvement. Thus, several biodegradable drug delivery systems containing either "mixed" (4-hydroxytamoxifen - 4-HT) or "pure" (RU 58668 - RU) AEs were prepared. Liposomes and nanospheres (NS, composed of non-toxic and biodegradable lipids and poly(d,l-lactic acid) incorporated up to 1 and 0.5 mM AE, respectively. Nanocapsules (NCs) in which an oily core solubilises the AE incorporated no more than 0.02 mM of the drug. PEG-functionalised nanoparticles survived longer in plasma and had better controlled release of the drug. The small size of the vectors (100-250 nm) was compatible with their extravasation through the discontinuous endothelium of tumour vasculature, allowing their accumulation in MCF-7 cell xenografts and leading to a prolonged exposure of the tumour to AEs. In these tumours and in MCF-7/ras xenografts, RU-NS and RU-NC (6.5mg/kg/week and 0.27 mg/kg/week, respectively, doses at which free RU had a very weak effect), both inhibited tumour growth. Entrapped RU significantly induced involution of tumours and strongly induced apoptosis in tumour cells, concomitantly with inhibiting tumour angiogenesis. 4-HT-nanoparticles also arrest oestradiol-induced tumour growth, inducing apoptosis and inhibiting angiogenesis. However, unlike RU-nanoparticles, they did not promote ERalpha subtype loss in tumour cells. Subcutaneous administration of both RU- and 4-HT-NS in MCF-7 xenografts strongly arrested tumour growth for prolonged periods and RUNS decreased the number of tumour epithelial cells. Analysis of the proteins involved in cell cycle proliferation and apoptosis confirmed that RU-nanoparticles were more efficient than 4-HT-nanoparticles. Their lack of toxicity and high anti-tumour potency that affects only tumour cells in the xenograft models mean these AE-loaded colloidal systems are a breakthrough in hormone-dependent breast cancer treatment.
Collapse
Affiliation(s)
- Jack-Michel Renoir
- CNRS, UMR 8612, and Université Paris-Sud, Faculté de Pharmacie, IFR 141, 92296 Châtenay-Malabry, France.
| | | | | | | | | | | |
Collapse
|
15
|
Maillard S, Gauduchon J, Marsaud V, Gouilleux F, Connault E, Opolon P, Fattal E, Sola B, Renoir JM. Improved antitumoral properties of pure antiestrogen RU 58668-loaded liposomes in multiple myeloma. J Steroid Biochem Mol Biol 2006; 100:67-78. [PMID: 16753295 DOI: 10.1016/j.jsbmb.2006.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
In most of multiple myeloma (MM) cells, the "pure" antiestrogen (AE) RU 58668 (RU) induced either a G1-arrest (LP-1, OPM-2, NCI-H929, U266 cells) or apoptosis (RPMI 8226 cells). In RPMI 8226 cells, RU activates a caspase-dependent cell death pathway leading to the release of cytochrome c, the decrease of the essential MM survival factor Mcl-1, the cleavage of Bid and the activation of caspases-3 and -8. Incorporation of RU in pegylated cholesterol-containing liposomes allowed a controlled RU release, improving its anti-proliferative and apoptotic effects in cells. In RPMI 8226 xenografts, i.v. injected RU-liposomes but not free RU, exhibited antitumor activity. In vivo, RU-liposomes triggered the mitochondrial death pathway, concomitantly with a down-regulation of Mcl-1 and Bid cleavage. The decrease of CD34 immunoreactivity indicated a reduction of angiogenesis. The decrease of VEGF secretion in vitro supported a direct effect of RU on angiogenesis. These pro-apoptotic and antiangiogenic effects were explained by a prolonged exposure to the drug and to the endocytosis capacity of liposomes which might increase RU uptake and bypass a membrane export of free RU. Thus, these combined enhanced activities of RU-liposomes support that such a delivery of an AE may constitute a strategy of benefit for MM treatment.
Collapse
|
16
|
Abstract
This article reviews the progress in the chemistry of the steroids that was published between January and December 2004. The reactions and partial synthesis of estrogens, androgens, pregnanes, cholic acid derivatives, cholestanes and vitamin D analogues are covered. There are 127 references.
Collapse
Affiliation(s)
- James R Hanson
- Department of Chemistry, University of Sussex, Brighton, Sussex, UKBN1 9QJ
| |
Collapse
|
17
|
Vural I, Memisoglu-Bilensoy E, Renoir J, Bochot A, Duchêne D, Hincal A. Transcription efficiency of tamoxifen citrate-loaded β-cyclodextrin nanoparticles. J Drug Deliv Sci Technol 2005. [DOI: 10.1016/s1773-2247(05)50062-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Literature Alerts. Drug Deliv 2005. [DOI: 10.1080/10717540500201502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|