1
|
Mohamed A, Salah M, Tahoun M, Hawner M, Abdelsamie AS, Frotscher M. Dual Targeting of Steroid Sulfatase and 17β-Hydroxysteroid Dehydrogenase Type 1 by a Novel Drug-Prodrug Approach: A Potential Therapeutic Option for the Treatment of Endometriosis. J Med Chem 2022; 65:11726-11744. [PMID: 35993890 DOI: 10.1021/acs.jmedchem.2c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel approach for the dual inhibition of steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1(17β HSD1) by a single drug was explored, starting from in-house 17β HSD1 inhibitors via masking their phenolic OH group with a sulfamate ester. The sulfamates were intentionally designed as drugs for the inhibition of STS and, at the same time, prodrugs for 17β-HSD1 inhibition ("drug-prodrug approach"). The most promising sulfamates 13, 16, 18-20, 22-24, 36, and 37 showed nanomolar IC50 values for STS inhibition in a cellular assay and their corresponding phenols displayed potent 17β-HSD1 inhibition in cell-free and cellular assays, high selectivity over 17β-HSD2, reasonable metabolic stability, and low estrogen receptor α affinity. A close relationship was found between the liberation of the phenolic compound by sulfamate hydrolysis and 17β-HSD1 inactivation. These results showed that the envisaged drug-prodrug concept was successfully implemented. The novel compounds constitute a promising class of therapeutics for the treatment of endometriosis and other estrogen-dependent diseases.
Collapse
Affiliation(s)
- Abdelrahman Mohamed
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany.,Pharmaceutical Organic Chemistry Department, Assiut University, Assiut 71526, Egypt
| | - Mohamed Salah
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo 12451, Egypt
| | - Mariam Tahoun
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| | - Manuel Hawner
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| | - Ahmed S Abdelsamie
- Department of Chemistry of Natural and Microbial Products, Institute of Pharmaceutical and Drug Industries Research, National Research Centre, El-Buhouth St., Dokki, P.O. Box 12622 Cairo 12451, Egypt.,Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E81, Saarbrücken 66123, Germany
| | - Martin Frotscher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| |
Collapse
|
2
|
Fujitani T, Fujii Y, Lyu Z, Harada Sassa M, Harada KH. Urinary equol levels are positively associated with urinary estradiol excretion in women. Sci Rep 2021; 11:19532. [PMID: 34593903 PMCID: PMC8484452 DOI: 10.1038/s41598-021-98872-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
Isoflavones found in soy products are a promising class of nutrients that may have a positive effect on human health. In particular, the phytoestrogen metabolite equol is associated with a reduced risk of developing female hormone-related diseases. However, the effect of equol on estrogen remains unclear. Equol can modify blood and urinary estradiol (E2) levels. The aim of this cross-sectional study was to examine the associations between urinary estrogen levels, equol levels, and equol production status in Japanese women. We analyzed urine samples from 520 women by gas chromatography-mass spectrometry. Urinary E2 and 4-hydroxylated E2 levels were higher in equol producers (EQP) than in non-EQPs (P < 0.0001 and P=0.00112, respectively). After adjusting for age and tobacco use by analysis of covariance, the association remained significant (β = 0.299, P < 0.0001). Analysis of covariance demonstrated that equol levels in urine were also positively associated with urinary E2 (β = 0.597, P < 0.0001). The log equol concentration showed a significant, but moderate, negative association with the serum E2 concentration (β = − 0.0225, P = 0.0462). Our findings suggest that equol may promote urinary E2 excretion and modify blood E2 levels in women.
Collapse
Affiliation(s)
- Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Mariko Harada Sassa
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.
| |
Collapse
|
3
|
Wang X, Ha D, Yoshitake R, Chan YS, Sadava D, Chen S. Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. Int J Mol Sci 2021; 22:8798. [PMID: 34445499 PMCID: PMC8395949 DOI: 10.3390/ijms22168798] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022] Open
Abstract
Xenoestrogens and phytoestrogens are referred to as "foreign estrogens" that are produced outside of the human body and have been shown to exert estrogen-like activity. Xenoestrogens are synthetic industrial chemicals, whereas phytoestrogens are chemicals present in the plant. Considering that these environmental estrogen mimics potentially promote hormone-related cancers, an understanding of how they interact with estrogenic pathways in human cells is crucial to resolve their possible impacts in cancer. Here, we conducted an extensive literature evaluation on the origins of these chemicals, emerging research techniques, updated molecular mechanisms, and ongoing clinical studies of estrogen mimics in human cancers. In this review, we describe new applications of patient-derived xenograft (PDX) models and single-cell RNA sequencing (scRNA-seq) techniques in shaping the current knowledge. At the molecular and cellular levels, we provide comprehensive and up-to-date insights into the mechanism of xenoestrogens and phytoestrogens in modulating the hallmarks of cancer. At the systemic level, we bring the emerging concept of window of susceptibility (WOS) into focus. WOS is the critical timing during the female lifespan that includes the prenatal, pubertal, pregnancy, and menopausal transition periods, during which the mammary glands are more sensitive to environmental exposures. Lastly, we reviewed 18 clinical trials on the application of phytoestrogens in the prevention or treatment of different cancers, conducted from 2002 to the present, and provide evidence-based perspectives on the clinical applications of phytoestrogens in cancers. Further research with carefully thought-through concepts and advanced methods on environmental estrogens will help to improve understanding for the identification of environmental influences, as well as provide novel mechanisms to guide the development of prevention and therapeutic approaches for human cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (X.W.); (D.H.); (R.Y.); (Y.S.C.); (D.S.)
| |
Collapse
|
4
|
He H, Li J, Xie Y, Li Z, Shi H, Lu CD. Effects of soy isoflavones on intake, body weight, sex hormones, antioxidant performance, and semen quality in Xinong Saanen goats. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1901716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Huanshan He
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Jintao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yangyang Xie
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Zhongyang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Christopher D. Lu
- College of Agriculture, Forestry and Natural Resource Management, University of Hawaii, Hilo, Hawaii, USA
| |
Collapse
|
5
|
Salah M, Abdelsamie AS, Frotscher M. Inhibitors of 17β-hydroxysteroid dehydrogenase type 1, 2 and 14: Structures, biological activities and future challenges. Mol Cell Endocrinol 2019; 489:66-81. [PMID: 30336189 DOI: 10.1016/j.mce.2018.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
During the past 25 years, the modulation of estrogen action by inhibition of 17β-hydroxysteroid dehydrogenase types 1 and 2 (17β-HSD1 and 17β-HSD2), respectively, has been pursued intensively. In the search for novel treatment options for estrogen-dependent diseases (EDD) and in order to explore estrogenic signaling pathways, a large number of steroidal and nonsteroidal inhibitors of these enzymes has been described in the literature. The present review gives a survey on the development of inhibitor classes as well as the structural formulas and biological properties of their most interesting representatives. In addition, rationally designed dual inhibitors of both 17β-HSD1 and steroid sulfatase (STS) as well as the first inhibitors of 17β-HSD14 are covered.
Collapse
Affiliation(s)
- Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123, Saarbrücken, Germany
| | - Ahmed S Abdelsamie
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E81, 66123, Saarbrücken, Germany; Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123, Saarbrücken, Germany.
| |
Collapse
|
6
|
van Duursen MBM. Modulation of estrogen synthesis and metabolism by phytoestrogens in vitro and the implications for women's health. Toxicol Res (Camb) 2017; 6:772-794. [PMID: 30090542 DOI: 10.1039/c7tx00184c] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
Phytoestrogens are increasingly used as dietary supplements due to their suggested health promoting properties, but also by women for breast enhancement and relief of menopausal symptoms. Generally, phytoestrogens are considered to exert estrogenic activity via estrogen receptors (ERs), but they may also affect estrogen synthesis and metabolism locally in breast, endometrial and ovarian tissues. Considering that accurate regulation of local hormone levels is crucial for normal physiology, it is not surprising that interference with hormonal synthesis and metabolism is associated with a wide variety of women's health problems, varying from altered menstrual cycle to hormone-dependent cancers. Yet, studies on phytoestrogens have mainly focused on ER-mediated effects of soy-derived phytoestrogens, with less attention paid to steroid synthesis and metabolism or other phytoestrogens. This review aims to evaluate the potential of phytoestrogens to modulate local estrogen levels and the implications for women's health. For that, an overview is provided of the effects of commonly used phytoestrogens, i.e. 8-prenylnaringenin, biochanin A, daidzein, genistein, naringenin, resveratrol and quercetin, on estrogen synthesizing and metabolizing enzymes in vitro. The potential implications for women's health are assessed by comparing the in vitro effect concentrations with blood concentrations that can be found after intake of these phytoestrogens. Based on this evaluation, it can be concluded that high-dose supplements with phytoestrogens might affect breast and endometrial health or fertility in women via the modulation of steroid hormone levels. However, more data regarding the tissue levels of phytoestrogens and effect data from dedicated, tissue-specific assays are needed for a better understanding of potential risks. At least until more certainty regarding the safety has been established, especially young women would better avoid using supplements containing high doses of phytoestrogens.
Collapse
Affiliation(s)
- Majorie B M van Duursen
- Research group Endocrine Toxicology , Institute for Risk Assessment Sciences , Faculty of Veterinary Medicine , Utrecht University , Yalelaan 104 , 3584 CM , Utrecht , the Netherlands . ; Tel: +31 (0)30 253 5398
| |
Collapse
|
7
|
Cassetta A, Stojan J, Krastanova I, Kristan K, Brunskole Švegelj M, Lamba D, Lanišnik Rižner T. Structural basis for inhibition of 17β-hydroxysteroid dehydrogenases by phytoestrogens: The case of fungal 17β-HSDcl. J Steroid Biochem Mol Biol 2017; 171:80-93. [PMID: 28259640 DOI: 10.1016/j.jsbmb.2017.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 01/03/2023]
Abstract
Phytoestrogens are plant-derived compounds that functionally and structurally mimic mammalian estrogens. Phytoestrogens have broad inhibitory activities toward several steroidogenic enzymes, such as the 17β-hydroxysteroid dehydrogenases (17β-HSDs), which modulate the biological potency of androgens and estrogens in mammals. However, to date, no crystallographic data are available to explain phytoestrogens binding to mammalian 17β-HSDs. NADP(H)-dependent 17β-HSD from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) has been the subject of extensive biochemical, kinetic and quantitative structure-activity relationship studies that have shown that the flavonols are the most potent inhibitors. In the present study, we investigated the structure-activity relationships of the ternary complexes between the holo form of 17β-HSDcl and the flavonols kaempferol and 3,7-dihydroxyflavone, in comparison with the isoflavones genistein and biochanin A. Crystallographic data are accompanied by kinetic analysis of the inhibition mechanisms for six flavonols (3-hydroxyflavone, 3,7-dihydroxyflavone, kaempferol, quercetin, fisetin, myricetin), one flavanone (naringenin), one flavone (luteolin), and two isoflavones (genistein, biochanin A). The kinetics analysis shows that the degree of hydroxylation of ring B significantly influences the overall inhibitory efficacy of the flavonols. A distinct binding mode defines the interactions between 17β-HSDcl and the flavones and isoflavones. Moreover, the complex with biochanin A reveals an unusual binding mode that appears to account for its greater inhibition of 17β-HSDcl with respect to genistein. Overall, these data provide a blueprint for identification of the distinct molecular determinants that underpin 17β-HSD inhibition by phytoestrogens.
Collapse
Affiliation(s)
- Alberto Cassetta
- Istituto di Cristallografia, UOS Trieste, Consiglio Nazionale delle Ricerche, S. S. 14-Km 163.5, I-34149, Trieste, Italy.
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - Ivet Krastanova
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S. C. p. A., S. S. 14-Km 163.5, I-34149, Trieste, Italy
| | - Katja Kristan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Mojca Brunskole Švegelj
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Doriano Lamba
- Istituto di Cristallografia, UOS Trieste, Consiglio Nazionale delle Ricerche, S. S. 14-Km 163.5, I-34149, Trieste, Italy
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Vuorinen A, Engeli RT, Leugger S, Bachmann F, Akram M, Atanasov AG, Waltenberger B, Temml V, Stuppner H, Krenn L, Ateba SB, Njamen D, Davis RA, Odermatt A, Schuster D. Potential Antiosteoporotic Natural Product Lead Compounds That Inhibit 17β-Hydroxysteroid Dehydrogenase Type 2. JOURNAL OF NATURAL PRODUCTS 2017; 80:965-974. [PMID: 28319389 PMCID: PMC5411959 DOI: 10.1021/acs.jnatprod.6b00950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 2 (17β-HSD2) converts the active steroid hormones estradiol, testosterone, and 5α-dihydrotestosterone into their weakly active forms estrone, Δ4-androstene-3,17-dione, and 5α-androstane-3,17-dione, respectively, thereby regulating cell- and tissue-specific steroid action. As reduced levels of active steroids are associated with compromised bone health and onset of osteoporosis, 17β-HSD2 is considered a target for antiosteoporotic treatment. In this study, a pharmacophore model based on 17β-HSD2 inhibitors was applied to a virtual screening of various databases containing natural products in order to discover new lead structures from nature. In total, 36 hit molecules were selected for biological evaluation. Of these compounds, 12 inhibited 17β-HSD2 with nanomolar to low micromolar IC50 values. The most potent compounds, nordihydroguaiaretic acid (1), IC50 0.38 ± 0.04 μM, (-)-dihydroguaiaretic acid (4), IC50 0.94 ± 0.02 μM, isoliquiritigenin (6), IC50 0.36 ± 0.08 μM, and ethyl vanillate (12), IC50 1.28 ± 0.26 μM, showed 8-fold or higher selectivity over 17β-HSD1. As some of the identified compounds belong to the same structural class, structure-activity relationships were derived for these molecules. Thus, this study describes new 17β-HSD2 inhibitors from nature and provides insights into the binding pocket of 17β-HSD2, offering a promising starting point for further research in this area.
Collapse
Affiliation(s)
- Anna Vuorinen
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Roger T. Engeli
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Susanne Leugger
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Fabio Bachmann
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Muhammad Akram
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Atanas G. Atanasov
- Department
of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Institute
of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, 05-552, Jastrzebiec, Poland
| | - Birgit Waltenberger
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Veronika Temml
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hermann Stuppner
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Liselotte Krenn
- Department
of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Sylvin B. Ateba
- Laboratory
of Animal Physiology, Department of Animal Biology and Physiology,
Faculty of Science, University of Yaounde
I, P.O. Box 812, Yaounde, Cameroon
| | - Dieudonné Njamen
- Laboratory
of Animal Physiology, Department of Animal Biology and Physiology,
Faculty of Science, University of Yaounde
I, P.O. Box 812, Yaounde, Cameroon
| | - Rohan A. Davis
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Alex Odermatt
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
- Biochemistry:
A. Odermatt, Tel: +41 (0)61 267 15 30. Fax: +41
(0)61 267 15 15.
E-mail:
| | - Daniela Schuster
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
- Molecular modeling: D. Schuster,
Tel: +43-512-507-58253. Fax: +43-512-507-58299. E-mail:
| |
Collapse
|
9
|
Bai Y, Zhou WD, Mu XM, Zhang Q, Yu C, Di B, Su MX. Covalent Immobilization of Human Placental 17β-Hydroxysteroid Dehydrogenase Type 1 onto Glutaraldehyde Activated Silica Coupled with LC-TOF/MS for Anti-Cancer Drug Screening Applications. Appl Biochem Biotechnol 2016; 182:482-494. [DOI: 10.1007/s12010-016-2339-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
|
10
|
Type 2 17-β hydroxysteroid dehydrogenase as a novel target for the treatment of osteoporosis. Future Med Chem 2016; 7:1431-56. [PMID: 26230882 DOI: 10.4155/fmc.15.74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Low estradiol level in postmenopausal women is implicated in osteoporosis, which occurs because of the high bone resorption rate. Estrogen formation is controlled by 17-β hydroxysteroid dehydrogenase 17-β HSD enzymes, where 17-β HSD type 1 contributes in the formation of estradiol, while type 2 catalyzes its catabolism. Inhibiting 17-β HSD2 can help in increasing estradiol concentration. Several promising 17-β HSD2 inhibitors that can act at low nanomolar range have been identified. However, there are some specific challenges associated with the application of these compounds. Our review provides an up-to-date summary of the current status and recent progress in the production of 17-β HSD2 inhibitors as well as the future challenges in their clinical application.
Collapse
|
11
|
Vini R, Sreeja S. Punica granatum and its therapeutic implications on breast carcinogenesis: A review. Biofactors 2015; 41:78-89. [PMID: 25857627 DOI: 10.1002/biof.1206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022]
Abstract
Punica granatum has a recorded history of pharmacological properties which can be attributed to its rich reservoir of phytochemicals. Investigations in recent years have established its tremendous potential as an antitumorogenic agent against various cancers including breast cancer, which is the second leading cause of cancer-related deaths in women. The plausible role of Punica as a therapeutic agent, as an adjuvant in chemotherapy, and its dietary implications as chemopreventive agent in breast cancer have been explored. Mechanistic studies have revealed that Punica extracts and its components, individually or in combination, can modulate and target key proteins and genes involved in breast cancer. Our earlier finding also demonstrated the role of methanolic extract of pomegranate pericarp in reducing proliferation in breast cancer by binding to estrogen receptor at the same time not affecting uterine weight unlike estradiol or tamoxifen. This review analyses other plausible mechanisms of Punica in preventing the progression of breast cancer and how it can possibly be a therapeutic agent by acting at various steps of carcinogenesis including proliferation, invasion, migration, metastasis, angiogenesis, and inflammation via various molecular mechanisms.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Research Programme, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | |
Collapse
|
12
|
Baker ME. The microbiome as a target for endocrine disruptors: Novel chemicals may disrupt androgen and microbiome-mediated autoimmunity. ACTA ACUST UNITED AC 2014. [DOI: 10.4161/23273739.2014.964539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Miralinaghi P, Schmitt C, Hartmann RW, Frotscher M, Engel M. 6-Hydroxybenzothiophene Ketones: Potent Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) Owing to Favorable Molecule Geometry and Conformational Preorganization. ChemMedChem 2014; 9:2294-308. [DOI: 10.1002/cmdc.201402050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 01/20/2023]
|
14
|
The effect of glycyrrhetinic acid on pharmacokinetics of cortisone and its metabolite cortisol in rats. J Biomed Biotechnol 2012; 2012:856324. [PMID: 23258958 PMCID: PMC3509542 DOI: 10.1155/2012/856324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022] Open
Abstract
The purpose of this paper is to study pharmacokinetics of cortisone (E) and its metabolite cortisol (F) in rats after administration of glycyrrhetinic acid (GA) and cortisone. Healthy male SD rats were randomized to be given 20 mg/kg E or E combined with 10 mg/kg GA. Blood samples were collected at 5, 10, 20, 40, 60, 90, 120, 150, 180, and 240 min after administration. The serum concentrations of E and F were determined by HLPC and pharmacokinetic parameters were calculated using DASver2.0 software. The parameters of AUC(0−t), AUC(0−∞), and Cmax for E in the group of E + GA were significantly higher than those in the group of E (P < 0.01); the half-time (t1/2β) was extended compared to E (P < 0.05) and CL/F was dropped obviously (P < 0.01). The rise in AUC(0−t), AUC(0−∞), and Cmax for cortisol in the group of E + GA was significantly compared to the group of E (P < 0.01). CL/F was lower than E (P < 0.01) and the half-time (t1/2β) was slightly extended. In this study, we find that GA restrains the metabolism of E and F and thus increases AUC, t1/2β, and Cmax of E and F, which may be related to its inhibition effect on 11β-hydroxysteroid dehydrogenase (11β-HSD).
Collapse
|
15
|
Maskarinec G, Ollberding NJ, Conroy SM, Morimoto Y, Pagano IS, Franke AA, Gentzschein E, Stanczyk FZ. Estrogen levels in nipple aspirate fluid and serum during a randomized soy trial. Cancer Epidemiol Biomarkers Prev 2011; 20:1815-21. [PMID: 21742946 DOI: 10.1158/1055-9965.epi-11-0363] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND On the basis of hypothesized protective effect, we examined the effect of soy foods on estrogens in nipple aspirate fluid (NAF) and serum, possible indicators of breast cancer risk. METHODS In a crossover design, we randomized 96 women who produced 10 μL or more NAF to a high- or low-soy diet for 6 months. During the high-soy diet, participants consumed 2 soy servings of soy milk, tofu, or soy nuts (∼50 mg of isoflavones per day); during the low-soy diet, they maintained their usual diet. Six NAF samples were obtained using a FirstCyte aspirator. Estradiol (E(2)) and estrone sulfate (E(1)S) were assessed in NAF and estrone (E(1)) in serum only, using highly sensitive radioimmunoassays. Mixed-effects regression models accounting for repeated measures and left-censoring limits were applied. RESULTS Mean E(2) and E(1)S were lower during the high-soy than the low-soy diet (113 vs. 313 pg/mL and 46 vs. 68 ng/mL, respectively) without reaching significance (P = 0.07); the interaction between group and diet was not significant. There was no effect of the soy treatment on serum levels of E(2) (P = 0.76), E(1) (P = 0.86), or E(1)S (P = 0.56). Within individuals, NAF and serum levels of E(2) (r(s) = 0.37; P < 0.001) but not of E(1)S (r(s) = 0.004; P = 0.97) were correlated. E(2) and E(1)S in NAF and serum were strongly associated (r(s) = 0.78 and r(s) = 0.48; P < 0.001). CONCLUSION Soy foods in amounts consumed by Asians did not significantly modify estrogen levels in NAF and serum. IMPACT The trend toward lower estrogen levels in NAF during the high-soy diet counters concerns about adverse effects of soy foods on breast cancer risk.
Collapse
Affiliation(s)
- Gertraud Maskarinec
- University of Hawaii Cancer Center, 1236 Lauhala Street, Honolulu, HI 96813, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Marchais-Oberwinkler S, Wetzel M, Ziegler E, Kruchten P, Werth R, Henn C, Hartmann RW, Frotscher M. New Drug-Like Hydroxyphenylnaphthol Steroidomimetics As Potent and Selective 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors for the Treatment of Estrogen-Dependent Diseases. J Med Chem 2010; 54:534-47. [DOI: 10.1021/jm1009082] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Marie Wetzel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Erika Ziegler
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Patricia Kruchten
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Ruth Werth
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Claudia Henn
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus C2 3, D-66123 Saarbrücken, Germany
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| |
Collapse
|
17
|
Möller G, Deluca D, Gege C, Rosinus A, Kowalik D, Peters O, Droescher P, Elger W, Adamski J, Hillisch A. Structure-based design, synthesis and in vitro characterization of potent 17β-hydroxysteroid dehydrogenase type 1 inhibitors based on 2-substitutions of estrone and D-homo-estrone. Bioorg Med Chem Lett 2009; 19:6740-4. [DOI: 10.1016/j.bmcl.2009.09.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/27/2009] [Accepted: 09/29/2009] [Indexed: 11/25/2022]
|
18
|
Michiels PJA, Ludwig C, Stephan M, Fischer C, Möller G, Messinger J, van Dongen M, Thole H, Adamski J, Günther UL. Ligand-based NMR spectra demonstrate an additional phytoestrogen binding site for 17beta-hydroxysteroid dehydrogenase type 1. J Steroid Biochem Mol Biol 2009; 117:93-8. [PMID: 19631742 DOI: 10.1016/j.jsbmb.2009.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 01/21/2023]
Abstract
The enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) has become an important drug target for breast cancer because it catalyzes the interconversion of estrone to the biologically more potent estradiol which also plays a crucial role in the etiology of breast cancer. Patients with an increased expression of the 17beta-HSD1 gene have a significantly worse outcome than patients without. Inhibitors for 17beta-HSD1 are therefore included in therapy development. Here we have studied binding of 17beta-HSD1 to substrates and a number of inhibitors using NMR spectroscopy. Ligand observed NMR spectra show a strong pH dependence for the phytoestrogens luteolin and apigenin but not for the natural ligands estradiol and estrone. Moreover, NMR competition experiments show that the phytoestrogens do not replace the estrogens despite their similar inhibition levels in the in vitro assay. These results strongly support an additional 17beta-HSD1 binding site for phytoestrogens which is neither the substrate nor the co-factor binding site. Docking experiments suggest the dimer interface as a possible location. An additional binding site for the phytoestrogens may open new opportunities for the design of inhibitors, not only for 17beta-HSD1, but also for other family members of the short chain dehydrogenases.
Collapse
Affiliation(s)
- Paul J A Michiels
- HWB-NMR, CR UK Institute of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lilienkampf A, Karkola S, Alho-Richmond S, Koskimies P, Johansson N, Huhtinen K, Vihko K, Wähälä K. Synthesis and Biological Evaluation of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) Inhibitors Based on a Thieno[2,3-d]pyrimidin-4(3H)-one Core. J Med Chem 2009; 52:6660-71. [DOI: 10.1021/jm900928k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annamaria Lilienkampf
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Sampo Karkola
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Sari Alho-Richmond
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Pasi Koskimies
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Nina Johansson
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Kaisa Huhtinen
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Kimmo Vihko
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Kristiina Wähälä
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
20
|
Chura JC, Ryu HS, Simard M, Poirier D, Tremblay Y, Brooker DC, Blomquist CH, Argenta PA. Steroid-converting enzymes in human ovarian carcinomas. Mol Cell Endocrinol 2009; 301:51-8. [PMID: 18723074 DOI: 10.1016/j.mce.2008.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 07/23/2008] [Accepted: 07/24/2008] [Indexed: 11/24/2022]
Abstract
Anti-estrogen therapies for treating ovarian carcinoma have had mixed outcomes suggesting some tumors may be estrogen-dependent. We assayed the activity levels of 17beta-hydroxysteroid dehydrogenase (17beta-HSD), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD/3-KSR) and estrone sulfatase in a series of ovarian epithelial carcinomas. 17beta-HSD activity ratios with estradiol (E(2)) and testosterone (T), and inhibition by isoform-specific inhibitors were used to estimate the contributions of 17beta-HSD isoforms. Activity levels were highest for estrone sulfatase, followed, respectively by 17beta-HSD, 3alpha-HSD/3-KSR, and 3beta-HSD. E(2)/T activity ratios varied widely between samples. A 17beta-HSD type 1 inhibition pattern was observed in 23% of the samples and a type 2 pattern in 25%. E(2) formation from estrone sulfate (E(1)S) was detected in 98% (47/48) of the samples. 17beta-HSD type 1, type 2 and type 5 mRNA was detected in matched primary tumor and metastases. Evaluation of 17beta-HSD and sulfatase activity levels, activity ratios and inhibition patterns may help predict tumor response to endocrine therapy.
Collapse
Affiliation(s)
- Justin C Chura
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Meier M, Möller G, Adamski J. Perspectives in Understanding the Role of Human 17β-Hydroxysteroid Dehydrogenases in Health and Disease. Ann N Y Acad Sci 2009; 1155:15-24. [DOI: 10.1111/j.1749-6632.2009.03702.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Ludwig C, Michiels PJA, Lodi A, Ride J, Bunce C, Günther UL. Evaluation of solvent accessibility epitopes for different dehydrogenase inhibitors. ChemMedChem 2008; 3:1371-6. [PMID: 18576452 DOI: 10.1002/cmdc.200800110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Knowledge about the orientation of ligands or inhibitors bound to a protein is vital for the development of new drugs. It was recently shown that solvent accessibility epitopes for protein ligands can be mapped by transferring magnetization from water molecules to the ligand to derive the ligand orientation. This is based on the fact that NMR signals of ligands arising from magnetization transferred from solvent molecules via the protein have a different sign from those arising from direct magnetization transfer from bulk water. Herein we critically evaluate the applicability of solvent accessibility mapping to derive binding orientations for ligands of two dehydrogenases (AKR1C3 and HSD17beta1) with very different binding pockets, including complexes in which the ligand is buried more deeply inside the protein. We also evaluate the possibility of using co-solvents, such as DMSO, for magnetization transfer.
Collapse
Affiliation(s)
- Christian Ludwig
- University of Birmingham, Vincent Drive, Edgbaston, Birmingham B152TT, UK
| | | | | | | | | | | |
Collapse
|
23
|
Karkola S, Lilienkampf A, Wähälä K. A 3D QSAR model of 17beta-HSD1 inhibitors based on a thieno[2,3-d]pyrimidin-4(3H)-one core applying molecular dynamics simulations and ligand-protein docking. ChemMedChem 2008; 3:461-72. [PMID: 18224704 DOI: 10.1002/cmdc.200700271] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) enzyme plays a crucial role in female hormonal regulation by catalysing the NADPH-dependent reduction of the less potent estrone E1 into the biologically active estradiol E2. Because 17beta-HSD1 is a key enzyme in E2 biosynthesis, it has emerged as an attractive drug target for inhibitor development. Herein we report the plausible binding modes and a 3D QSAR model of 17beta-HSD1 inhibitors based on a (di)cycloalkenothieno[2,3-d]pyrimidin-4(3H)-one core. Two generated enzyme complexes with potent inhibitors were subjected to molecular dynamics simulation to mimic the dynamic process of inhibitor binding. A set of 17beta-HSD1 inhibitors based on the thieno[2,3-d]pyrimidin-4(3H)-one core were docked into the resulting active site, and a CoMFA model employing the most extensive training set to date was generated. The model was validated with an external test set. Active site residues involved in inhibitor binding and CoMFA fields for steric and electrostatic interactions were identified. The model will be used to guide structural modifications of 17beta-HSD1 inhibitors based on a thieno[2,3-d]pyrimidin-4(3H)-one core in order to improve the biological activity as well as in the design of novel 17beta-HSD1 inhibitors.
Collapse
Affiliation(s)
- Sampo Karkola
- Laboratory of Organic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55, 00014 Helsinki, Finland
| | | | | |
Collapse
|
24
|
Rice S, Mason HD, Whitehead SA. Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells. J Steroid Biochem Mol Biol 2006; 101:216-25. [PMID: 16965912 DOI: 10.1016/j.jsbmb.2006.06.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/29/2006] [Indexed: 01/11/2023]
Abstract
There is evidence that certain phytoestrogens inhibit aromatase, the enzyme that converts androgens to oestrogens. Kinetic studies in cell-free preparations show that they may inhibit aromatase by competitive binding to the enzyme, but there is a paucity of studies investigating longer-term effects of phytoestrogens on the expression of steroidogenic enzymes. This study tested the hypothesis that phytoestrogens could reduce aromatase activity by down-regulation of its expression. Experiments were carried out on primary cultures of human granulosa-luteal (GL) cells after they had been exposed to phytoestrogens for 48 h. Aromatase activity was measured by the ability of cells to convert testosterone to estradiol over a 4h period and aromatase mRNA expression (mRNA(arom)) was subsequently measured from the same cells using quantitative real-time PCR. The compounds investigated were the flavones, apigenin and quercetin, and the isoflavones, genistein, biochanin A and daidzein at doses of 10 microM and 100 nM. Combinations of these compounds at the lower dose were also investigated. All compounds tested dose-dependently reduced mean mRNA(arom) compared with controls. Apigenin was the most potent inhibitor with significant inhibition of mRNA(arom) seen at both 10 microM and 100 nM, whilst other flavonoids (except biochanin A) only induced significant inhibition (p<or=0.05) at the higher dose. Low dose (100 nM) mixtures of the compounds were ineffective except for a combination of the three isoflavones that induced a significant inhibition of mRNA(arom). The changes in aromatase activity paralleled the mRNA(arom) results and additional studies showed that the reduction in aromatase activity was significantly delayed in time compared with the reduction in mRNA(arom.) This is the first study to compare the action of various phytoestrogens, either singly or in low-dose combination, on the expression and activity of aromatase in human cells and it suggests that chronic dietary exposure and tissue accumulation of low-dose mixtures of phytoestrogens could have important consequences for aromatase activity and the production of oestrogens.
Collapse
Affiliation(s)
- Suman Rice
- Division of Basic Medical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | | | | |
Collapse
|
25
|
Brozic P, Smuc T, Gobec S, Rizner TL. Phytoestrogens as inhibitors of the human progesterone metabolizing enzyme AKR1C1. Mol Cell Endocrinol 2006; 259:30-42. [PMID: 16962702 DOI: 10.1016/j.mce.2006.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 07/06/2006] [Accepted: 08/02/2006] [Indexed: 11/30/2022]
Abstract
Phytoestrogens are plant-derived, non-steroidal constituents of our diets. They can act as agonists or antagonists of estrogen receptors, and they can modulate the activities of the key enzymes in estrogen biosynthesis. Much less is known about their actions on the androgen and progesterone metabolizing enzymes. We have examined the inhibitory action of phytoestrogens on the key human progesterone-metabolizing enzyme, 20alpha-hydroxysteroid dehydrogenase (AKR1C1). This enzyme inactivates progesterone and the neuroactive 3alpha,5alpha-tetrahydroprogesterone, to form their less active counterparts, 20alpha-hydroxyprogesterone and 5alpha-pregnane-3alpha,20alpha-diol, respectively. We overexpressed recombinant human AKR1C1 in Escherichia coli, purified it to homogeneity, and examined the selected phytoestrogens as inhibitors of NADPH-dependent reduction of a common AKR substrate, 9,10-phenantrenequinone, and progesterone. The most potent inhibitors were 7-hydroxyflavone, 3,7-dihydroxyflavone and flavanone naringenin with IC(50) values in the low microM range. Docking of the flavones in the active site of AKR1C1 revealed their possible binding modes, in which they are sandwiched between the Leu308 and Trp227 of AKR1C1.
Collapse
Affiliation(s)
- Petra Brozic
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|