1
|
Coradini D, Oriana S. Impact of sex hormones dysregulation and adiposity on the outcome of postmenopausal breast cancer patients. Clin Obes 2021; 11:e12423. [PMID: 33135396 DOI: 10.1111/cob.12423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023]
Abstract
Epidemiological studies demonstrated that, in postmenopausal women, high circulating levels of testosterone, especially when associated with weight gain, positively correlated with an increased risk of breast cancer because of the augmented production of oestrogen via testosterone aromatization in the adipose tissue. Besides, growing evidence suggests that sulfatase can increase the tissue concentration of bioactive estradiol through the reconversion of estrone sulfate, thus providing a favourable milieu for epithelial cells expressing the oestrogen receptor. In this review, we will discuss how the "obesity-insulin-testosterone" connection and the abnormal production of bioactive oestrogen - as a result of the conversion of the androgens by aromatase and the estrone reconversion by sulfatase-, may affect the response to hormone therapy and the outcome of postmenopausal breast cancer patients, and how a combined therapy including metformin, anti-inflammatory drugs, and aromatase/sulfatase inhibitors could successfully improve patient's outcome.
Collapse
Affiliation(s)
- Danila Coradini
- Laboratory of Medical Statistics and Biometry, Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, Milan, Italy
| | - Saro Oriana
- Senology Center, Ambrosiana Clinic, Istituto Sacra Famiglia, Milan, Italy
| |
Collapse
|
2
|
Daśko M, Demkowicz S, Biernacki K, Ciupak O, Kozak W, Masłyk M, Rachon J. Recent progress in the development of steroid sulphatase inhibitors - examples of the novel and most promising compounds from the last decade. J Enzyme Inhib Med Chem 2020; 35:1163-1184. [PMID: 32363947 PMCID: PMC7241464 DOI: 10.1080/14756366.2020.1758692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review article is to provide an overview of recent achievements in the synthesis of novel steroid sulphatase (STS) inhibitors. STS is a crucial enzyme in the biosynthesis of active hormones (including oestrogens and androgens) and, therefore, represents an extremely attractive molecular target for the development of hormone-dependent cancer therapies. The inhibition of STS may effectively reduce the availability of active hormones for cancer cells, causing a positive therapeutic effect. Herein, we report examples of novel STS inhibitors based on steroidal and nonsteroidal cores that contain various functional groups (e.g. sulphamate and phosphorus moieties) and halogen atoms, which may potentially be used in therapies for hormone-dependent cancers. The presented work also includes examples of multitargeting agents with STS inhibitory activities. Furthermore, the fundamental discoveries in the development of the most promising drug candidates exhibiting STS inhibitory activities are highlighted.
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Witold Kozak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
3
|
Anbar HS, El-Gamal R, Ullah S, Zaraei SO, Al-Rashida M, Zaib S, Pelletier J, Sévigny J, Iqbal J, El-Gamal MI. Evaluation of sulfonate and sulfamate derivatives possessing benzofuran or benzothiophene nucleus as inhibitors of nucleotide pyrophosphatases/phosphodiesterases and anticancer agents. Bioorg Chem 2020; 104:104305. [PMID: 33017718 DOI: 10.1016/j.bioorg.2020.104305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 02/04/2023]
Abstract
Ectonucleotidases are a broad family of ectoenzymes that play a crucial role in purinergic cell signaling. Ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs) belong to this group and are important drug targets. In particular, NPP1 and NPP3 are known to be druggable targets for treatment of impaired calcification disorders (including pathological aortic calcification) and cancer, respectively. In this study, we investigated a series of sulfonate and sulfamate derivatives of benzofuran and benzothiophene as potent and selective inhibitors of NPP1 and NPP3. Compounds 1c, 1g, 1n, and 1s are the most active NPP1 inhibitors (IC50 values in the range 0.12-0.95 µM). Moreover, compounds 1e, 1f, 1j, and 1l are the most potent inhibitors of NPP3 (IC50 ranges from 0.12 to 0.95 µM). Compound 1d, 1f and 1t are highly selective inhibitors of NPP1 over NPP3, whereas compounds 1m and 1s are found to be highly selective towards NPP3 over NPP1. Structure-activity relationship (SAR) study has been discussed in detailed. With the aid of molecular docking studies, a common binding mode of these compounds and suramin (the standard inhibitor) was revealed, where the sulfonate group acts as a cation-binding moiety that comes in close contact with the zinc ion of the active site. Moreover, cytotoxic evaluation against MCF-7 and HT-29 cancer cell lines revealed that compound 1r is the most cytotoxic towards MCF-7 cell line with IC50 value of 0.19 µM. Compound 1r is more potent and selective against cancer cells than normal cells (WI-38) as compared to doxorubicin.
Collapse
Affiliation(s)
- Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, University of Mansoura, Mansoura 35516, Egypt
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Seyed-Omar Zaraei
- Center for Biomaterials, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Republic of Korea; Department of Biomolecular Science, Korea University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| |
Collapse
|
4
|
Sulfamates in drug design and discovery: Pre-clinical and clinical investigations. Eur J Med Chem 2019; 179:257-271. [PMID: 31255926 DOI: 10.1016/j.ejmech.2019.06.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
In the present article, we reviewed the sulfamate-containing compounds reported as bioactive molecules. The possible molecular targets of sulfamate derivatives include steroid sulfatase enzyme, carbonic anhydrases, acyl transferase, and others. Sulfamate derivatives can help treat hormone-dependent tumors including breast, prostate, and endometrial cancers, Binge eating disorder, migraine, glaucoma, weight loss, and epilepsy. Sulfamate derivatives can act also as calcium sensing receptor agonists and can aid in osteoporosis. Furthermore, acyl sulfamate derivatives can act as antibacterial agents against Gram-positive bacteria. A recent study revealed a new side effect of topiramate, a sulfamate-containing compound, which is sialolithiasis. The structural and biological characteristics of the reviewed compounds are presented in detail.
Collapse
|
5
|
Ohe K, Miyajima S, Abe I, Tanaka T, Hamaguchi Y, Harada Y, Horita Y, Beppu Y, Ito F, Yamasaki T, Terai H, Mori M, Murata Y, Tanabe M, Ashida K, Kobayashi K, Enjoji M, Yanase T, Harada N, Utsumi T, Mayeda A. HMGA1a induces alternative splicing of estrogen receptor alpha in MCF-7 human breast cancer cells. J Steroid Biochem Mol Biol 2018; 182:21-26. [PMID: 29678492 DOI: 10.1016/j.jsbmb.2018.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/23/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
The high-mobility group A protein 1a (HMGA1a) protein is known as an oncogene whose expression level in cancer tissue correlates with the malignant potential, and known as a component of senescence-related structures connecting it to tumor suppressor networks in fibroblasts. HMGA1 protein binds to DNA, but recent studies have shown it exerts novel functions through RNA-binding. Our previous studies have shown that sequence-specific RNA-binding of HMGA1a induces exon-skipping of Presenilin-2 exon 5 in sporadic Alzheimer disease. Here we show that HMGA1a induced exon-skipping of the estrogen receptor alpha (ERα) gene and increased ERα46 mRNA expression in MCF-7 breast cancer cells. An RNA-decoy of HMGA1a efficiently blocked this event and reduced ERα46 protein expression. Blockage of HMGA1a RNA-binding property consequently induced cell growth through reduced ERα46 expression in MCF-7 cells and increased sensitivity to tamoxifen in the tamoxifen-resistant cell line, MCF-7/TAMR1. Stable expression of an HMGA1a RNA-decoy in MCF-7 cells exhibited decreased ERα46 protein expression and increased estrogen-dependent tumor growth when these cells were implanted in nude mice. These results show HMGA1a is involved in alternative splicing of the ERα gene and related to estrogen-related growth as well as tamoxifen sensitivity in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan.
| | - Shinsuke Miyajima
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Ichiro Abe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino city, 818-8502, Japan
| | - Tomoko Tanaka
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yuriko Hamaguchi
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yoshihiro Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yuta Horita
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yuki Beppu
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Fumiaki Ito
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Takafumi Yamasaki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Hiroki Terai
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Makito Tanabe
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Kenji Ashida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino city, 818-8502, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Nobuhiro Harada
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Toshiaki Utsumi
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Aichi, Toyoake, 470-1192, Japan
| |
Collapse
|
6
|
Thomas MP, Potter BVL. Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women's Health. J Med Chem 2015; 58:7634-58. [PMID: 25992880 PMCID: PMC5159624 DOI: 10.1021/acs.jmedchem.5b00386] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1994, following work from this laboratory, it was reported that estrone-3-O-sulfamate irreversibly inhibits a new potential hormone-dependent cancer target steroid sulfatase (STS). Subsequent drug discovery projects were initiated to develop the core aryl O-sulfamate pharmacophore that, over some 20 years, have led to steroidal and nonsteroidal drugs in numerous preclinical and clinical trials, with promising results in oncology and women's health, including endometriosis. Drugs have been designed to inhibit STS, e.g., Irosustat, as innovative dual-targeting aromatase-steroid sulfatase inhibitors (DASIs) and as multitargeting agents for hormone-independent tumors, such as the steroidal STX140 and nonsteroidal counterparts, acting inter alia through microtubule disruption. The aryl sulfamate pharmacophore is highly versatile, operating via three distinct mechanisms of action, and imbues attractive pharmaceutical properties. This Perspective gives a personal view of the work leading both to the therapeutic concepts and these drugs, their current status, and how they might develop in the future.
Collapse
Affiliation(s)
- Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Barry V. L. Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
7
|
Sulphamoylated 2-methoxyestradiol analogues induce apoptosis in adenocarcinoma cell lines. PLoS One 2013; 8:e71935. [PMID: 24039728 PMCID: PMC3764137 DOI: 10.1371/journal.pone.0071935] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/04/2013] [Indexed: 12/03/2022] Open
Abstract
2-Methoxyestradiol (2ME2) is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1–25 μM) was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues.
Collapse
|
8
|
Minorics R, Bózsity N, Wölfling J, Mernyák E, Schneider G, Márki A, Falkay G, Ocsovszki I, Zupkó I. Antiproliferative effect of normal and 13-epi-D-homoestrone and their 3-methyl ethers on human reproductive cancer cell lines. J Steroid Biochem Mol Biol 2012; 132:168-75. [PMID: 22609630 DOI: 10.1016/j.jsbmb.2012.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/26/2012] [Accepted: 04/30/2012] [Indexed: 01/04/2023]
Abstract
The possibility of the therapeutic use of estrogens emerged following the recognition that certain estradiol analogs, and particularly metabolites (e.g. the A-ring metabolite 2-hydroxyestrone, etc.) inhibit the differentiation of diverse tumor cell lines. Until recently, despite the investigation of numerous synthetic d-ring-substituted estrone derivatives, no analysis had been published on the effects of D-ring expansion of estrone on its tumor-suppressing activity. The aim of the present study was to characterize the antiproliferative effects of normal and 13-epi-D-homoestrone and their 3-methyl ethers (1-4) on human reproductive cancer cell lines. The antitumor activities of the two epimer pairs on HeLa, MCF-7 and Ishikawa cells were determined. Normal D-homoestrone exerted the greatest cytostatic effect on HeLa cells (IC(50)=5.5 μM) and was subjected to further investigations to elucidate its mechanism of action on apoptosis induction. Morphological changes detected by Hoechst 33258-propidium iodide double staining, the cell cycle arrest at phase G2/M and the subsequent increase in the proportion of the subG1 fraction determined by flow cytometric analysis and the significant increase in the activity of caspase-3 confirmed the induction of apoptosis in HeLa cells treated with D-homoestrone. D-Homoestrone was also tested on a non-cancerous human lung fibroblast cell line (MRC-5) to determine its selective toxicity. The concentration in which it inhibited cell proliferation by 50% was at least six times higher for the fibroblast cells than for cervical cancer cells. No significant in vivo estrogenic activity was observed as concerns the uterus weight of gonadectomized rats after a 7-day treatment with normal D-homoestrone. These results led to the conclusion that normal D-homoestrone is a novel antitumor compound with a similar activity on HeLa cells as that of the reference agent cisplatin, but its selectivity toward non-cancerous cells is significantly higher than that of cisplatin. It may be considered to be a basic lead molecule for the preclinical development of potential anticancer agents.
Collapse
Affiliation(s)
- Renáta Minorics
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Visagie MH, Joubert AM. 2-Methoxyestradiol-bis-sulphamate refrains from inducing apoptosis and autophagy in a non-tumorigenic breast cell line. Cancer Cell Int 2012; 12:37. [PMID: 22905730 PMCID: PMC3492053 DOI: 10.1186/1475-2867-12-37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/02/2012] [Indexed: 12/26/2022] Open
Abstract
Background Anticancer research resulted in the discovery of a promising antimitotic metabolite, 2-methoxyestradiol. 2-Methoxyestradiol-bis-sulphamate, a bis-sulphamoylated analogue exerts antiproliferative- and antimitotic activity. Investigating the anticancer potential of 2-methoxyestradiol-bis-sulphamate requires demonstrating the influence of 2-methoxyestradiol-bis-sulphamate on non-tumorigenic cells. This project focused on the in vitro effects of 2-methoxyestradiol-bis-sulphamate on the non-tumorigenic MCF-12A breast epithelial cell line. Methods The in vitro influence of 2-methoxyestradiol-bis-sulphamate was investigated on cell cycle progression, possible induction of apoptosis and autophagy and reactive oxygen species generation. Cell cycle progression was done using flow cytometry in conjunction with ethanol fixation and propidium iodide staining. Displaying effects on the mitochondrial membrane potential was achieved utilizing flow cytometry and the MitoCapture TM Mitochondrial apoptosis detection kit. Autophagy detection was done by means of flow cytometry and anti-LC3B conjugated to DyLight 488. Reactive oxygen species generation was conducted employing flow cytometry and 2,7-dichlorofluorescein diacetate and hydroethidine. Results This study demonstrated that 2-methoxyestradiol-bis-sulphamate did not affect cell cycle progression or reactive oxygen species in a statistically significant manner in the non-tumorigenic MCF-12A cell line. In addition, 2-methoxyestradiol-bis-sulphamate did not statistically significantly induce apoptosis or autophagy. Conclusion Reports indicate that 2-methoxyestradiol-bis-sulphamate induces apoptosis and autophagy in several tumorigenic cell lines. The anticancer ability of 2-methoxyestradiol-bis-sulphamate is due to its antimitotic activity. However, this study demonstrates the promising notion that 2-methoxyestradiol-bis-sulphamate does not affect the non-tumorigenic MCF-12A cells. This project contributes to the embedded scientific knowledge regarding the differential death mechanisms used by 2-methoxyestradiol-bis-sulphamate on tumorigenic and non-tumorigenic cell lines.
Collapse
Affiliation(s)
- Michelle H Visagie
- Department of Physiology, University of Pretoria, P,O, Box 2034, Pretoria 0001, South Africa.
| | | |
Collapse
|
10
|
Visagie MH, Joubert AM. In vitro effects of 2-methoxyestradiol-bis-sulphamate on reactive oxygen species and possible apoptosis induction in a breast adenocarcinoma cell line. Cancer Cell Int 2011; 11:43. [PMID: 22152028 PMCID: PMC3251537 DOI: 10.1186/1475-2867-11-43] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/12/2011] [Indexed: 01/20/2023] Open
Abstract
Background In the search for anticancer agents, a promising 17-β-estradiol metabolite, 2-methoxyestradiol (2ME2) was found that exerts antiproliferative in vitro and in vivo activity. Since 2ME2 has limited biological accessibility and rapid metabolic degradation, the purpose of this study was to investigate the in vitro influence exerted by an analogue of 2ME2 namely 2-methoxyestradiol-bis-sulphamate (2MEBM) in a breast adenocarcinoma cell line (MCF-7). Methods This was conducted by investigating 2MEBM's in vitro influence on cell cycle progression, mitochondrial membrane potential and possible production of reactive oxygen species (ROS) generation. In vitro effects of 2MEBM on cell cycle progression was demonstrated by means of flow cytometry using propidium iodide. Hydrogen peroxide and superoxide production was investigated using 2,7-dichlorofluorescein diacetate and hydroethidine, respectively. The probable reduction in the mitochondrial membrane potential was demonstrated using a MitoCapture™ kit. Results Cell cycle progression revealed the presence of a sub-G1 apoptotic peak. Reduction of mitochondrial membrane potential after exposure to 2MEBM was demonstrated and an increase in ROS production was also observed. Conclusion This study verified that 2MEBM exposure resulted in apoptosis induction, increased ROS production and reduced mitochondrial membrane potential in a tumorigenic breast epithelial cell line. Data obtained from this project contributes to the unravelling of the in vitro signal transduction of 2MEBM in tumorigenic cell lines.
Collapse
Affiliation(s)
- Michelle H Visagie
- Department of Physiology, University of Pretoria, P,O, Box 2034, Pretoria, 0001, South Africa.
| | | |
Collapse
|
11
|
Visagie MH, Joubert AM. 2-Methoxyestradiol-bis-sulfamate induces apoptosis and autophagy in a tumorigenic breast epithelial cell line. Mol Cell Biochem 2011; 357:343-52. [PMID: 21656128 DOI: 10.1007/s11010-011-0905-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/28/2011] [Indexed: 01/26/2023]
Abstract
In anticancer research where the focus is on finding agents that induces cell death while leaving non-tumorigenic cells less affected, a novel 2-methoxyestradiol derivative has come forth. 2-Methoxyestradiol-bis-sulfamate (2-MeOE2bisMATE) is a 2-methoxyestradiol derivative produced by bis-sulphamoylation, which possesses increased antiproliferative activity and biological availability. Several questions remain regarding the type of cell death mechanisms and possible induction of autophagy by 2-MeOE2bisMATE. The aim of this in vitro study was to investigate the cell death mechanisms exerted by 2-MeOE2bisMATE in an adenocarcinoma cell line (MCF-7) by analyzing its influence on cell growth, morphology, and possible induction of cell death. Spectrophotometry (crystal violet staining), transmission electron microscopy (TEM), light microscopy (hematoxylin and eosin staining), and fluorescent microscopy (Hoechst 33342, propidium iodide and acridine orange) were employed. Spectrophotometrical studies indicated that 2-MeOE2bisMATE decreased cell numbers to 75% in MCF-7 cells after 24 h and to 47% after 48 h of exposure. TEM demonstrated membrane blebbing, nuclear fragmentation, and chromatin condensation indicating the hallmarks of apoptosis. Light microscopy revealed the presence of several cells blocked in metaphase, and apoptotic cells were also observed. Fluorescent microscopy demonstrated increased lysosomal staining; suggesting the induction of autophagy. 2-MeOE2bisMATE shows therapeutic potential, as an, anticancer agent, and the investigation of the cell death mechanisms used by 2-MeOE2bisMATE, thus, warrants further investigation.
Collapse
Affiliation(s)
- M H Visagie
- Department of Physiology, University of Pretoria, Pretoria 0001, South Africa
| | | |
Collapse
|
12
|
Stander A, Joubert F, Joubert A. Docking, synthesis, and in vitro evaluation of antimitotic estrone analogs. Chem Biol Drug Des 2011; 77:173-81. [PMID: 21244635 DOI: 10.1111/j.1747-0285.2010.01064.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, Autodock 4.0 was employed to discover potential carbonic anhydrase IX inhibitors that are able to interfere with microtubule dynamics by binding to the Colchicine binding site of tubulin. Modifications at position 2' of estrone were made to include moieties that are known to improve the antimitotic activity of estradiol analogs. 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-3-ol-17-one estronem (C9) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (C12) were synthesized and tested in vitro. Growth studies were conducted utilizing spectrophotometrical analysis with crystal violet as DNA stain. Compounds C9 and C12 were cytotoxic in MCF-7 and MDA-MB-231 tumorigenic and metastatic breast cancer cells, SNO non-keratinizing squamous epithelium cancer cells and HeLa cells after 48 h exposure. Compounds C9 inhibited cell proliferation to 50% of the vehicle-treated controls from 110 to 160 nm and C12 at concentrations ranging from 180 to 220 nm. Confocal microscopy revealed abnormal spindle morphology in mitotic cells. Cell cycle analysis showed an increase in the number of cells in the G(2) /M fraction after 24 h and an increase in the number of cell in the sub-G(1) fraction after 48 h, indicating that the compounds are antimitotic and able to induce apoptosis.
Collapse
Affiliation(s)
- Andre Stander
- Department of Physiology, University of Pretoria, Pretoria, South Africa.
| | | | | |
Collapse
|
13
|
Vorster CJJ, Joubert AM. In vitro effects of 2-methoxyestradiol-bis-sulphamate on the non-tumorigenic MCF-12A cell line. Cell Biochem Funct 2010; 28:412-9. [PMID: 20589734 DOI: 10.1002/cbf.1671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A priority in recent anti-cancer drug development has been attaining better side-effect profiles for potential compounds. To produce highly specific cancer therapies it is necessary to understand both the effects of the proposed compound on cancer and on normal cells comprising the rest of the human body. Thus in vitro evaluation of these compounds against non-carcinogenic cell lines is of critical importance. One of the most recent developments in experimental anti-cancer agents is 2-methoxyestradiol-bis-sulphamate (2ME-BM), a sulphamoylated derivative of 2-methoxyestradiol. The aim of this study was to evaluate the in vitro effects of 2ME-BM on cell proliferation, morphology and mechanisms of cell death in the non-carcinogenic MCF-12A breast epithelial cell line. The study revealed changes in proliferative capacity, morphology and cell death induction in response to 2ME-BM exposure (24 h at 0.4 microM). Microscopy showed decreased cell density and cell death-associated morphology (increased apoptotic characteristics), a slight increase in acidic intracellular vesicles and insignificant ultra-structural aberrations. Mitotic indices revealed a G(2)M-phase cell cycle block. This was confirmed by flow cytometry, where an increased fraction of abnormal cells and a decrease in cyclin B1 levels were observed. These results evidently demonstrate that the non-carcinogenic MCF-12A cell line is less susceptible when compared to 2ME-BM-exposed cancer cell lines previously tested. Further in vitro research into the mechanism of this potentially useful compound is warranted.
Collapse
|
14
|
The in vitro effects of 2-methoxyestradiol-bis-sulphamate on cell numbers, membrane integrity and cell morphology, and the possible induction of apoptosis and autophagy in a non-tumorigenic breast epithelial cell line. Cell Mol Biol Lett 2010; 15:564-81. [PMID: 20697831 PMCID: PMC6275594 DOI: 10.2478/s11658-010-0030-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/02/2010] [Indexed: 11/20/2022] Open
Abstract
2-methoxyestradiol (2ME2) exerts estrogen receptor-independent anti-proliferative, anti-angiogenic and anti-tumor activity in vitro and in vivo. Due to its low bioavailability and rapid metabolic degradation, several analogues have been developed in recent years. 2-methoxyestradiol-bis-sulphamate (2-MeOE2bisMATE) is a bis-sulphamoylated derivative of 2ME2 with anti-proliferative activity. The aim of this study was to investigate cell signaling events induced by 2-MeOE2bisMATE in a non-tumorigenic cell line (MCF-12A) by analysing its influence on cell number, morphology and membrane integrity, and the possible induction of apoptosis and autophagy. Dose- and time-dependent studies revealed that 48 h exposure to 2-MeOE2bisMATE (0.4 μM) resulted in a decrease in cell numbers to 79%. A slight increase in the level of lactate dehydrogenase production was observed in the 2-MeOE2bisMATE-treated cells. Morphological studies revealed an increase in the number of cells in metaphase. Hallmarks of apoptosis were also found, namely nuclear fragmentation and apoptotic bodies. In addition, increased lysosomal staining was observed via fluorescent microscopy, suggesting the induction of another type of cell death, namely autophagy. Since 2-MeOE2bisMATE is regarded as a potential anti-cancer agent, it is also imperative to investigate the susceptibility of non-tumorigenic cells to its influence. The data generated from this study contributes to the understanding of the action that 2-MeOE2bisMATE exerts on the non-tumorigenic MCF-12A breast epithelial cell line.
Collapse
|
15
|
Day JM, Foster PA, Tutill HJ, Newman SP, Ho YT, Leese MP, Potter BVL, Reed MJ, Purohit A. BCRP expression does not result in resistance to STX140 in vivo, despite the increased expression of BCRP in A2780 cells in vitro after long-term STX140 exposure. Br J Cancer 2009; 100:476-86. [PMID: 19156141 PMCID: PMC2658539 DOI: 10.1038/sj.bjc.6604873] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 12/11/2022] Open
Abstract
The anti-proliferative and anti-angiogenic properties of the endogenous oestrogen metabolite, 2-methoxyoestradiol (2-MeOE2), are enhanced in a series of sulphamoylated derivatives of 2-MeOE2. To investigate possible mechanisms of resistance to these compounds, a cell line, A2780.140, eightfold less sensitive to the 3,17-O,O-bis-sulphamoylated derivative, STX140, was derived from the A2780 ovarian cancer cell line by dose escalation. Other cell lines tested did not develop STX140 resistance. RT-PCR and immunoblot analysis demonstrated that breast cancer resistance protein (BCRP) expression is dramatically increased in A2780.140 cells. The cells are cross-resistant to the most structurally similar bis-sulphamates, and to BCRP substrates, mitoxantrone and doxorubicin; but they remain sensitive to taxol, an MDR1 substrate, and to all other sulphamates tested. Sensitivity can be restored using a BCRP inhibitor, and this pattern of resistance is also seen in a BCRP-expressing MCF-7-derived cell line, MCF-7.MR. In mice bearing wild-type (wt) and BCRP-expressing tumours on either flank, both STX140 and mitoxantrone inhibited the growth of the MCF-7wt xenografts, but only STX140 inhibited growth of the MCF-7.MR tumours. In conclusion, STX140, a promising orally bioavailable anti-cancer agent in pre-clinical development, is highly efficacious in BCRP-expressing xenografts. This is despite an increase in BCRP expression in A2780 cells in vitro after chronic dosing with STX140.
Collapse
Affiliation(s)
- J M Day
- Department of Endocrinology and Metabolic Medicine and Sterix Ltd., Imperial College London, St Mary's Hospital, London W2 1NY, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Parsons MFC, Foster PA, Chander SK, Jhalli R, Newman SP, Leese MP, Potter BVL, Purohit A, Reed MJ. The in vivo properties of STX243: a potent angiogenesis inhibitor in breast cancer. Br J Cancer 2008; 99:1433-41. [PMID: 18841154 PMCID: PMC2579677 DOI: 10.1038/sj.bjc.6604707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 11/09/2022] Open
Abstract
The steroidal-based drug 2-ethyloestradiol-3,17-O,O-bis-sulphamate (STX243) has been developed as a potent antiangiogenic and antitumour compound. The objective of this study was to ascertain whether STX243 is more active in vivo than the clinically relevant drug 2-methoxyoestradiol (2-MeOE2) and the structurally similar compound 2-MeOE2-3,17-O,O-bis-sulphamate (STX140). The tumour growth inhibition efficacy, antiangiogenic potential and pharmacokinetics of STX243 were examined using four in vivo models. Both STX243 and STX140 were capable of retarding the growth of MDA-MB-231 xenograft tumours (72 and 63%, respectively), whereas no inhibition was observed for animals treated with 2-MeOE2. Further tumour inhibition studies showed that STX243 was also active against MCF-7 paclitaxel-resistant tumours. Using a Matrigel plug-based model, in vivo angiogenesis was restricted with STX243 and STX140 (50 and 72%, respectively, using a 10 mg kg(-1) oral dose), thereby showing the antiangiogenic activity of both compounds. The pharmacokinetics of STX243 were examined at two different doses using adult female rats. The compound was orally bioavailable (31% after a single 10 mg kg(-1) dose) and resistant to metabolism. These results show that STX243 is a potent in vivo drug and could be clinically effective at treating a number of oncological conditions.
Collapse
Affiliation(s)
- M F C Parsons
- Endocrinology and Metabolic Medicine and Sterix Ltd., Faculty of Medicine, Imperial College London, St Mary's Hospital, London W2 1NY, UK
| | - P A Foster
- Endocrinology and Metabolic Medicine and Sterix Ltd., Faculty of Medicine, Imperial College London, St Mary's Hospital, London W2 1NY, UK
| | - S K Chander
- Endocrinology and Metabolic Medicine and Sterix Ltd., Faculty of Medicine, Imperial College London, St Mary's Hospital, London W2 1NY, UK
| | - R Jhalli
- Endocrinology and Metabolic Medicine and Sterix Ltd., Faculty of Medicine, Imperial College London, St Mary's Hospital, London W2 1NY, UK
| | - S P Newman
- Endocrinology and Metabolic Medicine and Sterix Ltd., Faculty of Medicine, Imperial College London, St Mary's Hospital, London W2 1NY, UK
| | - M P Leese
- Medicinal Chemistry, Department of Pharmacy and Pharmacology and Sterix Ltd., University of Bath, Bath BA2 7AY, UK
| | - B V L Potter
- Medicinal Chemistry, Department of Pharmacy and Pharmacology and Sterix Ltd., University of Bath, Bath BA2 7AY, UK
| | - A Purohit
- Endocrinology and Metabolic Medicine and Sterix Ltd., Faculty of Medicine, Imperial College London, St Mary's Hospital, London W2 1NY, UK
| | - M J Reed
- Endocrinology and Metabolic Medicine and Sterix Ltd., Faculty of Medicine, Imperial College London, St Mary's Hospital, London W2 1NY, UK
| |
Collapse
|
17
|
Kato S, Sadarangani A, Lange S, Delpiano AM, Vargas M, Brañes J, Carvajal J, Lipkowitz S, Owen GI, Cuello MA. 2-methoxyestradiol mediates apoptosis through caspase-dependent and independent mechanisms in ovarian cancer cells but not in normal counterparts. Reprod Sci 2008; 15:878-894. [PMID: 19050321 PMCID: PMC9019574 DOI: 10.1177/1933719108324171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
OBJECTIVE The estrogen metabolite 2-methoxyestradiol has shown antitumorigenic action in some epithelial tumors. In the present work we investigate its effects in ovarian cancer used alone or in combination with other apoptotic-inducing reagents such as tumor necrosis factor-related apoptosis-inducing ligand. METHODS To assess the effect of 2-methoxyestradiol, dose response and time courses in ovarian cancer and normal cells were conducted. Apoptosis was confirmed through DNA laddering, by flow cytometry, and Western blotting of proteins involved in the apoptotic cascade. RESULTS 2-Methoxyestradiol induced apoptosis in ovarian cancer cells but not in normal counterparts. 2-Methoxyestradiol activates both the intrinsic and extrinsic apoptotic pathways. 2-Methoxyestradiol-mediated apoptosis involves reactive oxygen species generation and caspase-dependent and caspase-independent mechanisms. We also demonstrate that 2-methoxyestradiol selectively induces an additive/synergistic apoptotic response in ovarian cancer cells when used in combination with tumor necrosis factor-related apoptosis-inducing ligand. CONCLUSIONS 2-Methoxyestradiol, alone or in combination with tumor necrosis factor-related apoptosis-inducing ligand, should be considered as a potential treatment for ovarian cancer.
Collapse
Affiliation(s)
- Sumie Kato
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Newman SP, Foster PA, Ho YT, Day JM, Raobaikady B, Kasprzyk PG, Leese MP, Potter BVL, Reed MJ, Purohit A. The therapeutic potential of a series of orally bioavailable anti-angiogenic microtubule disruptors as therapy for hormone-independent prostate and breast cancers. Br J Cancer 2007; 97:1673-82. [PMID: 18026194 PMCID: PMC2360283 DOI: 10.1038/sj.bjc.6604100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Therapies for hormone-independent prostate and breast cancer are limited, with the effectiveness of the taxanes compromised by toxicity, lack of oral bioavailability and drug resistance. This study aims to identify and characterise new microtubule disruptors, which may have improved efficacy relative to the taxanes in hormone-independent cancer. 2-Methoxy-3-O-sulphamoyl-17β-cyanomethyl-oestra-1,3,5(10)-triene (STX641), 2-methoxy-3-hydroxy-17β-cyanomethyl-oestra-1,3,5(10)-triene (STX640) and 2-methoxyoestradiol-3,17-O,O-bis-sulphamate (STX140) were all potent inhibitors of cell proliferation in a panel of prostate and breast cancer cell lines. STX641 and STX640 significantly inhibited tumour growth in the MDA-MB-231 xenograft model. STX641 inhibited both in vitro and in vivo angiogenesis. Despite good in vivo activity, STX641 was not as potent in vivo as STX140. Therefore, STX140 was evaluated in the prostate hormone-independent PC-3 xenograft model. STX140 had superior efficacy to docetaxel, 2-MeOE2 and bevacizumab. In contrast to vinorelbine, no significant toxicity was observed. Furthermore, STX140 could be dosed daily over a 60-day period leading to tumour regression and complete responses, which were maintained after the cessation of dosing. This study demonstrates that STX641 and STX140 have considerable potential for the treatment of hormone-independent breast and prostate cancer. In contrast to the taxanes, STX140 can be dosed orally, with no toxicity being observed even after prolonged daily dosing.
Collapse
Affiliation(s)
- S P Newman
- Endocrinology and Metabolic Medicine and Sterix Ltd, Faculty of Medicine, Imperial College London, St Mary's Hospital, London W2 1NY, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kato S, Sadarangani A, Lange S, Villalón M, Brañes J, Brosens JJ, Owen GI, Cuello M. The oestrogen metabolite 2-methoxyoestradiol alone or in combination with tumour necrosis factor-related apoptosis-inducing ligand mediates apoptosis in cancerous but not healthy cells of the human endometrium. Endocr Relat Cancer 2007; 14:351-68. [PMID: 17639050 PMCID: PMC6112420 DOI: 10.1677/erc-07-0008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancers of the reproductive tract account for 12% of all malignancies in women. As previous studies have shown that oestrogen metabolites can cause apoptosis, we characterised the effect of oestrogen and oestrogen metabolites on non-cancerous and cancerous human endometrial cells. Herein, we demonstrate that 2-methoxyoestradiol (2ME), but not 17beta-oestradiol, induces apoptosis in cancer cell lines and primary cultured tumours of endometrial origin. In contrast, 2ME had no effect on cell viability of corresponding normal tissue. This ability of 2ME to induce apoptosis does not require oestrogen receptor activation, but is associated with increased entry into the G2/M phases of the cell cycle and the activation of both the intrinsic and the extrinsic apoptotic pathways. The selective behaviour of 2ME on cancerous as opposed to normal tissue may be due to a reduction in 17beta-hydroxysteroid dehydrogenase type II levels in cancer cells and to a differential down-regulation of superoxide dismutase. Furthermore, we demonstrate that pre-treatment with 2ME enhances the sensitivity of reproductive tract cancer cells to the apoptotic drug tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), without the loss in cell viability to normal cells incurred by currently chemotherapeutic drugs. In conclusion, 2ME, alone or in combination with TRAIL, may be an effective treatment for cancers of uterine origin with minimal toxicity to corresponding healthy female reproductive tissue.
Collapse
Affiliation(s)
- Sumie Kato
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Casilla 114-D, Chile
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chander SK, Foster PA, Leese MP, Newman SP, Potter BVL, Purohit A, Reed MJ. In vivo inhibition of angiogenesis by sulphamoylated derivatives of 2-methoxyoestradiol. Br J Cancer 2007; 96:1368-76. [PMID: 17426705 PMCID: PMC2360171 DOI: 10.1038/sj.bjc.6603727] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 03/07/2007] [Accepted: 03/12/2007] [Indexed: 12/24/2022] Open
Abstract
Drugs that inhibit growth of tumours and their blood supply could have considerable therapeutic potential. 2-Methoxyoestradiol-3,17-O,O-bis-sulphamate (2-MeOE2bisMATE) has been shown to inhibit the proliferation of MCF-7 (ER+) breast cancer cells and angiogenesis in vitro. 2-MeOE2bisMATE and its analogue, 17-Cym-2-MeOE2MATE, were investigated for their ability to inhibit in vivo angiogenesis and tumour growth. The mouse Matrigel plug assay for angiogenesis was used to investigate the effect of compounds on neovascularisation and was quantified using a FITC-dextran injection technique. Nude mice bearing tumours derived from MCF-7 cells were used to assess efficacy on tumour growth. Tumour sections were stained for VEGFR-2 and Ki67 to assess tumour angiogenesis and cell proliferation respectively. Matrigel plugs supplemented with basic fibroblast growth factor resulted in increased neovascularisation over 7 days. Oral administration of 2-MeOE2bisMATE for 7 days at 10 or 50 mg kg(-1) significantly reduced neovascularisation to or below control levels respectively. 17-Cym-2-MeOE2MATE at 20 mg kg(-1) was equally effective. 2-MeOE2bisMATE, dosed daily for 21 days, caused a 52% reduction in tumour growth at 5 mg kg(-1) and 38% regression at 20 mg kg(-1). 17-Cym-2-MeOE2MATE (20 mg kg(-1)) reduced tumour growth by 92%. Immunohistochemistry revealed a reduction in angiogenesis and proliferation. Matrigel plug and tumour imaging after FITC-dextran injection indicated that 2-MeOE2bisMATE caused a marked disruption of vasculature. These sulphamoylated oestrogen derivatives have been shown to be potent inhibitors of angiogenesis in vivo. This, together with their ability to inhibit tumour growth, indicates the potential of this new class of drugs for further development for cancer therapy.
Collapse
Affiliation(s)
- S K Chander
- Endocrinology and Metabolic Medicine and Sterix Ltd, Imperial College, St Mary's Hospital, London W2 1NY, UK.
| | | | | | | | | | | | | |
Collapse
|
21
|
Newman SP, Ireson CR, Tutill HJ, Day JM, Parsons MFC, Leese MP, Potter BVL, Reed MJ, Purohit A. The role of 17beta-hydroxysteroid dehydrogenases in modulating the activity of 2-methoxyestradiol in breast cancer cells. Cancer Res 2006; 66:324-30. [PMID: 16397246 DOI: 10.1158/0008-5472.can-05-2391] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The bis-sulfamoylated derivative of 2-methoxyestradiol (2-MeOE2), 2-methoxyestradiol-3,17-O,O-bis-sulfamate (2-MeOE2bisMATE), has shown potent antiproliferative and antiangiogenic activity in vitro and inhibits tumor growth in vivo. 2-MeOE2bisMATE is bioavailable, in contrast to 2-MeOE2 that has poor bioavailability. In this study, we have examined the role of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) type 2 in the metabolism of 2-MeOE2. In MDA-MB-231 cells, which express high levels of 17beta-HSD type 2, and in MCF-7 cells transfected with 17beta-HSD type 2, high-performance liquid chromatography analysis showed that a significant proportion of 2-MeOE2 was metabolized to inactive 2-methoxyestrone. Furthermore, MCF-7 cells transfected with 17beta-HSD type 2 were protected from the cytotoxic effects of 2-MeOE2. In contrast, no significant metabolism of 2-MeOE2bisMATE was detected in transfected cells and 17beta-HSD type 2 transfection did not offer protection against 2-MeOE2bisMATE cytotoxicity. This study may go some way to explaining the poor bioavailability of 2-MeOE2, as the gastrointestinal mucosa expresses high levels of 17beta-HSD type 2. In addition, this study shows the value of synthesizing sulfamoylated derivatives of 2-MeOE2 with C17-position modifications as these compounds have improved bioavailability and potency both in vitro and in vivo.
Collapse
Affiliation(s)
- Simon P Newman
- Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College, St Mary's Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Honma N, Takubo K, Sawabe M, Arai T, Akiyama F, Sakamoto G, Utsumi T, Yoshimura N, Harada N. Estrogen-metabolizing enzymes in breast cancers from women over the age of 80 years. J Clin Endocrinol Metab 2006; 91:607-13. [PMID: 16303840 DOI: 10.1210/jc.2005-1967] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Aromatase, steroid sulfatase, and 17beta-hydroxysteroid dehydrogenase type 1 (HSD-1) peripherally up-regulate, whereas estrogen sulfotransferase (EST) and HSD-2 down-regulate, the synthesis of active and more potent estrogens. These estrogen-metabolizing enzymes (EMEs) are important in postmenopausal breast cancers, but have never been systematically examined in breast cancers of the elderly. OBJECTIVE AND DESIGN mRNA levels of EMEs in cancerous and normal breast tissues from 39 elderly patients (age, 80-99 yr) were compared with those from 39 controls (age, 37-70 yr) or compared according to estrogen (ER)/progesterone (PR) receptor status. RESULTS Aromatase levels were higher in cancers of the elderly (EldCa) than in normal tissue of the elderly (P = 0.0008) or cancers of controls (P = 0.0033). In contrast, levels of steroid sulfatase and EST were higher in cancers of controls than normal tissue of controls (P = 0.0046 and P < 0.0001, respectively) or EldCa (P = 0.0001 and P < 0.0001, respectively). Levels of HSD-1 and HSD-2 did not differ significantly between any two of the categories. Among EldCa, HSD-1 levels were higher in ER/PR-positive than in ER/PR-negative carcinomas, whereas EST and HSD-2 exhibited opposite results. CONCLUSIONS The importance of aromatase is relatively increased in EldCa. ER/PR-positive EldCa exhibited a pattern of EMEs more beneficial to the production of estrogen than did ER/PR-negative EldCa. The specific pattern exhibited in EldCa may elucidate the role of EMEs in the absence of ovarian estrogens in the pathogenesis of breast cancer.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/enzymology
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/metabolism
- Adult
- Aged
- Aged, 80 and over
- Aromatase/genetics
- Aromatase/metabolism
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/enzymology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Lobular/enzymology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Estrogens/biosynthesis
- Female
- Humans
- Hydroxysteroid Dehydrogenases/genetics
- Hydroxysteroid Dehydrogenases/metabolism
- Immunohistochemistry
- Middle Aged
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Steryl-Sulfatase/genetics
- Steryl-Sulfatase/metabolism
- Sulfotransferases/genetics
- Sulfotransferases/metabolism
Collapse
Affiliation(s)
- Naoko Honma
- Research Team for Geriatric Diseases, Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|