1
|
Chen X, Wei C, Zhao J, Zhou D, Wang Y, Zhang S, Zuo H, Dong J, Zhao Z, Hao M, He X, Bian Y. Carnosic acid: an effective phenolic diterpenoid for prevention and management of cancers via targeting multiple signaling pathways. Pharmacol Res 2024; 206:107288. [PMID: 38977208 DOI: 10.1016/j.phrs.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Cancer is a serious global public health issue, and a great deal of research has been made to treat cancer. Of these, discovery of promising compounds that effectively fight cancer always has been the main point of interest in pharmaceutical research. Carnosic acid (CA) is a phenolic diterpenoid compound widely present in Lamiaceae plants such as Rosemary (Rosmarinus officinalis L.). In recent years, there has been increasing evidence that CA has significant anti-cancer activity, such as leukaemia, colorectal cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, stomach cancer, lymphoma, prostate cancer, oral cancer, etc. The potential mechanisms involved by CA, including inhibiting cell proliferation, inhibiting metastasis, inducing cell apoptosis, stimulating autophagy, regulating the immune system, reducing inflammation, regulating the gut microbiota, and enhancing the effects of other anti-cancer drugs. This article reviews the biosynthesis, pharmacokinetics and metabolism, safety and toxicity, as well as the molecular mechanisms and signaling pathways of the anticancer activity of CA. This will contribute to the development of CA or CA-containing functional foods for the prevention and treatment of cancer, providing important advances in the advancement of cancer treatment strategies.
Collapse
Affiliation(s)
- Xufei Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Cuntao Wei
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Juanjuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Dandan Zhou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yue Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shengxiang Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianhui Dong
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zeyuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Man Hao
- Clinical Medical College of Acuupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Ortho and MSK Science, University College London, London WC1E 6BT, UK.
| | - Xirui He
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong 519041, China; UCL School of Pharmacy, Pharmacognosy & Phytotherapy, University College London, London WC1E 6BT, UK.
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
2
|
Wang X, Beute WK, Harrison JS, Studzinski GP. JNK1 as a signaling node in VDR-BRAF induction of cell death in AML. J Steroid Biochem Mol Biol 2018; 177:149-154. [PMID: 28765039 PMCID: PMC5788744 DOI: 10.1016/j.jsbmb.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022]
Abstract
Numerous clinical studies of vitamin D, its derivatives or analogs, have failed to clearly demonstrate sustained benefits when used for the treatment of human malignant diseases. However, given the strong preclinical evidence of anti-neoplastic activity and the epidemiological associations suggesting that vitamin D compounds may have a place in cancer therapy, attempts are continuing to devise new approaches to their therapeutic use. This laboratory has developed a strategy to enhance the effectiveness of the currently standard therapy of Acute Myeloid Leukemia (AML) by the immediate addition of the vitamin D2 analog Doxercalciferol combined with the plant polyphenol-derived Carnosic acid to AML cells previously treated with Cytarabine (AraC). Enhancement of AML cell death was noted to be dependent on VDR and BRAF kinase. Here we document that the stress-related kinase JNK is an important additional component of cell death enhancement in this protocol. Either the Knock-down or the inhibition of JNK activity reduced the enhancement of AraC-induced cell death, and we show that JNK signaling to the apoptosis regulator BIM and Caspase executioners of cell death are downstream of VDR and BRAF. A clear understanding of the molecular basis for the increased efficacy of AraC in the therapy of AML is expected to bring this regimen to a clinical trial.
Collapse
Affiliation(s)
- Xuening Wang
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers, Newark, NJ, 07103, USA
| | - William K Beute
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers, Newark, NJ, 07103, USA
| | - Jonathan S Harrison
- Department of Medicine, University of Connecticut, Farmington, CT, 06030, USA
| | - George P Studzinski
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers, Newark, NJ, 07103, USA.
| |
Collapse
|
3
|
Kang N, Jian JF, Cao SJ, Zhang Q, Mao YW, Huang YY, Peng YF, Qiu F, Gao XM. Physalin A induces G2/M phase cell cycle arrest in human non-small cell lung cancer cells: involvement of the p38 MAPK/ROS pathway. Mol Cell Biochem 2016; 415:145-55. [PMID: 27000859 DOI: 10.1007/s11010-016-2686-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/12/2016] [Indexed: 01/17/2023]
Abstract
Physalin A (PA) is an active withanolide isolated from Physalis alkekengi var. franchetii, a traditional Chinese herbal medicine named Jindenglong, which has long been used for the treatment of sore throat, hepatitis, and tumors in China. In the present study, we firstly investigated the effects of PA on proliferation and cell cycle distribution of the human non-small cell lung cancer (NSCLC) A549 cell line, and the potential mechanisms involved. Here, PA inhibited cell growth in dose- and time-dependent manners. Treatment of A549 cells with 28.4 μM PA for 24 h resulted in approximately 50 % cell death. PA increased the amount of intracellular ROS and the proportion of cells in G2/M. G2/M arrest was attenuated by the addition of ROS scavenger NAC. ERK and P38 were triggered by PA through phosphorylation in a time-dependent manner. The phosphorylation of ERK and P38 were not attenuated by the addition of NAC, but the use of the p38 inhibitor could reduce, at least in part, PA-induced ROS and the proportion of cells in G2/M. PA induces G2/M cell cycle arrest in A549 cells involving in the p38 MAPK/ROS pathway. This study suggests that PA might be a promising therapeutic agent against NSCLC.
Collapse
Affiliation(s)
- Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Jun-Feng Jian
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Shi-Jie Cao
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Qiang Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Yi-Wei Mao
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Yi-Yuan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Yan-Fei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Feng Qiu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.
| | - Xiu-Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.
| |
Collapse
|
4
|
Gocek E, Studzinski GP. The Potential of Vitamin D-Regulated Intracellular Signaling Pathways as Targets for Myeloid Leukemia Therapy. J Clin Med 2015; 4:504-34. [PMID: 26239344 PMCID: PMC4470153 DOI: 10.3390/jcm4040504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/06/2015] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
The current standard regimens for the treatment of acute myeloid leukemia (AML) are curative in less than half of patients; therefore, there is a great need for innovative new approaches to this problem. One approach is to target new treatments to the pathways that are instrumental to cell growth and survival with drugs that are less harmful to normal cells than to neoplastic cells. In this review, we focus on the MAPK family of signaling pathways and those that are known to, or potentially can, interact with MAPKs, such as PI3K/AKT/FOXO and JAK/STAT. We exemplify the recent studies in this field with specific relevance to vitamin D and its derivatives, since they have featured prominently in recent scientific literature as having anti-cancer properties. Since microRNAs also are known to be regulated by activated vitamin D, this is also briefly discussed here, as are the implications of the emerging acquisition of transcriptosome data and potentiation of the biological effects of vitamin D by other compounds. While there are ongoing clinical trials of various compounds that affect signaling pathways, more studies are needed to establish the clinical utility of vitamin D in the treatment of cancer.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| | - George P Studzinski
- Department of Pathology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Ave., Newark, NJ 17101, USA.
| |
Collapse
|
5
|
Cell-Type-Specific Effects of Silibinin on Vitamin D-Induced Differentiation of Acute Myeloid Leukemia Cells Are Associated with Differential Modulation of RXRα Levels. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:401784. [PMID: 23259067 PMCID: PMC3505927 DOI: 10.1155/2012/401784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 03/15/2012] [Indexed: 01/22/2023]
Abstract
Plant polyphenols have been shown to enhance the differentiation of acute myeloid leukemia (AML) cells induced by the hormonal form of vitamin D(3) (1α,25-dihydroxyvitamin D(3); 1,25D). However, how these agents modulate 1,25D effects in different subtypes of AML cells remains poorly understood. Here, we show that both carnosic acid (CA) and silibinin (SIL) synergistically enhancd 1,25D-induced differentiation of myeloblastic HL60 cells. However, in promonocytic U937 cells, only CA caused potentiation while SIL attenuated 1,25D effect. The enhanced effect of 1,25D+CA was accompanied by increases in both the vitamin D receptor (VDR) and retinoid X receptor alpha (RXRα) protein levels and vitamin D response element (VDRE) transactivation in both cell lines. Similar increases were observed in HL60 cells treated with 1,25D + SIL. In U937 cells, however, SIL inhibited 1,25D-induced VDRE transactivation concomitant with downregulation of RXRα at both transcriptional and posttranscriptional levels. These inhibitory effects correlated with the inability of SIL, with or without 1,25D, to activate the Nrf2/antioxidant response element signaling pathway in U937 cells. These results suggest that opposite effects of SIL on 1,25D-induced differentiation of HL60 and U937 cells may be determined by cell-type-specific signaling and transcriptional responses to this polyphenol resulting in differential modulation of RXRα expression.
Collapse
|
6
|
Wang X, Gocek E, Novik V, Harrison JS, Danilenko M, Studzinski GP. Inhibition of Cot1/Tlp2 oncogene in AML cells reduces ERK5 activation and up-regulates p27Kip1 concomitant with enhancement of differentiation and cell cycle arrest induced by silibinin and 1,25-dihydroxyvitamin D(3). Cell Cycle 2010; 9:4542-51. [PMID: 21084834 DOI: 10.4161/cc.9.22.13790] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute myelogenous leukemia (AML) is a disease characterized by dysregulated cell proliferation associated with impaired cell differentiation, and current treatment regimens rarely save the patient. Thus, new mechanism-based approaches are needed to improve prognosis of this disease. We have investigated in preclinical studies the potential anti-leukemia use of the plant-derived polyphenol Silibinin (SIL) in combination with 1,25-dihydroxyvitamin D3 (1,25D). Although most of the leukemic blasts ex vivo responded by differentiation to treatment with this combination, the reasons for the absence of SIL-1,25D synergy in some cases were unclear. Here we report that failure of SIL to enhance the action of 1,25D is likely due to the SIL-induced increase in the activity of differentiation-antagonizing cell components, such as ERK5. This kinase is under the control of Cot1/Tlp2, and inhibition of Cot1 activity by a specific pharmacological inhibitor 4-(3-chloro-4-fluorophenylamino)-6-(pyridin-3-yl-methylamino-3-cyano-[1-7]-naphthyridine, or by Cot1 siRNA, increases the differentiation by SIL/1,25D combinations. Conversely, over-expression of a Cot1 construct increases the cellular levels of P-ERK5, and SIL/1,25D-induced differentiation and cell cycle arrest are diminished. It appears that reduction in ERK5 activity by inhibition of Cot1 allows SIL to augment the expression of 1,25D-induced differentiation promoting factors and cell cycle regulators such as p27 (Kip1) , which leads to cell cycle arrest. This study shows that in some cell contexts SIL/1,25D can promote expression of both differentiation-promoting and differentiation-inhibiting genes, and that the latter can be neutralized by a highly specific pharmacological inhibitor, suggesting a potential for supplementing treatment of AML with this combination of agents.
Collapse
Affiliation(s)
- Xuening Wang
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, University of Medicine and Dentistry New Jersey, Newark, USA
| | | | | | | | | | | |
Collapse
|
7
|
Zhang J, Harrison JS, Uskokovic M, Danilenko M, Studzinski GP. Silibinin can induce differentiation as well as enhance vitamin D3-induced differentiation of human AML cells ex vivo and regulates the levels of differentiation-related transcription factors. Hematol Oncol 2010; 28:124-32. [PMID: 19866452 DOI: 10.1002/hon.929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Induction of terminal differentiation is a conceptually attractive approach for the therapy of neoplastic diseases. Although vitamin D derivatives (deltanoids) can induce differentiation of AML cells in vitro, so far deltanoids have not been successfully brought to the clinic, due to the likelihood of life-threatening hypercalcemia. Here, we incubated freshly obtained blood cells from patients with AML with a plant antioxidant (PAOx), silibinin (SIL), alone or together with a deltanoid. Twenty patients with AML (all subtypes except M3) were available for this study, and in 14 (70%), SIL (60 µM) either induced differentiation ex vivo, or enhanced differentiation induced by deltanoids, or both. Interestingly, SIL acting alone induced differentiation only in cases in which chromosome aberrations could not be detected. In eleven samples sufficient material was available for a limited analysis of the underlying events. Quantitative RT-PCR showed that differentiation markers were upregulated at the mRNA level by both SIL and deltanoids, suggesting that intracellular signaling pathways upstream of transcription factors (TFs) were activated by these agents. Western analysis for proteins which function as TFs in deltanoid-induced monocytic differentiation, such as members of Jun and C/EBP families, surprisingly demonstrated that SIL upregulated all these TFs in the cases tested. This suggests that although the presence of SIL may not always be sufficient to induce differentiation, it can serve as a differentiation enabling factor for blasts obtained from a large proportion of patients with AML. Thus, SIL/deltanoid combinations warrant further consideration as preventive/therapeutic regimens in human leukaemia.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
8
|
Zhang J, Harrison JS, Studzinski GP. Isoforms of p38MAPK gamma and delta contribute to differentiation of human AML cells induced by 1,25-dihydroxyvitamin D₃. Exp Cell Res 2010; 317:117-30. [PMID: 20804750 DOI: 10.1016/j.yexcr.2010.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 11/18/2022]
Abstract
Inhibition of p38MAPK alpha/beta is known to enhance 1,25-dihydroxyvitamin (1,25D)-induced monocytic differentiation, but the detailed mechanism of this effect was not clear. We now show that the enhancement of differentiation becomes apparent with slow kinetics (12-24 h). Interestingly, the inhibition of p38MAPK alpha/beta by their selective inhibitor SB202190 (SB) leads to an upregulated expression of p38MAPK isoforms gamma and delta in 1,25D-treated AML cells, in cell lines and in primary culture. Although the expression and activating phosphorylations of p38MAPK alpha are also increased by an exposure of the cells to SB, its kinase activity is blocked by SB, as shown by reduced levels of phosphorylated Hsp27, a downstream target of p38MAPK alpha. A positive role of p38MAPKs in 1,25D-induced differentiation is shown by the inhibition of differentiation by antisense oligonucleotides to all p38MAPK isoforms. Other principal branches of MAPK pathways showed early (6 h) activation of MEK/ERK by SB, followed by activation of JNK1/2 pathway and enhanced expression and/or activation of PU.1, ATF-2 differentiation-related transcription factors. Taken together with previous reports, the results indicate that 1,25D-induced differentiation is enhanced by the activation of at least three branches of MAPK pathways (ERK1/2; p38MAPK gamma/delta; JNK1/2). This activation may result from the removal of feedback inhibition of an upstream regulator of those pathways, when p38MAPK alpha and beta are inhibited by SB.
Collapse
MESH Headings
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Calcitriol/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- HL-60 Cells
- Humans
- Imidazoles/pharmacology
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Isoenzymes/physiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mitogen-Activated Protein Kinase 12/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 12/genetics
- Mitogen-Activated Protein Kinase 12/metabolism
- Mitogen-Activated Protein Kinase 12/physiology
- Mitogen-Activated Protein Kinase 13/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 13/genetics
- Mitogen-Activated Protein Kinase 13/metabolism
- Mitogen-Activated Protein Kinase 13/physiology
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/physiology
- Protein Kinase Inhibitors/pharmacology
- Pyridines/pharmacology
- Time Factors
- U937 Cells
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey, Medical School, Newark, NJ 07103, USA
| | | | | |
Collapse
|
9
|
Thompson T, Danilenko M, Vassilev L, Studzinski GP. Tumor suppressor p53 status does not determine the differentiation-associated G₁ cell cycle arrest induced in leukemia cells by 1,25-dihydroxyvitamin D₃ and antioxidants. Cancer Biol Ther 2010; 10:344-50. [PMID: 20543580 DOI: 10.4161/cbt.10.4.12366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vitamin D derivatives can induce differentiation of human acute myeloid leukemia (AML) cells. Here, we investigated if the G₁ cell cycle block associated with monocytic differentiation is modulated by the p53 status of the cells treated with 1,25D, alone or with plant antioxidants carnosic acid (C) or silibinin (S), and a p38 MAPK inhibitor SB202190 (SB), a combination (D-C/S-SB) previously shown to enhance differentiation of AML p53null cells. D-C/S-SB enhanced differentiation of OCI-AML3 (p53wt) and as expected HL60 (p53 null) cells, but not of MOLM-13 (p53wt) cells. Conversely, MOLM-13 (p53wt) cells treated with 1,25D and/or D-C/S-SB, resembled HL60 (p53 null) cells in rapid G₁ block, while OCI-AML3 (p53wt) cells showed a delayed G₁ block when treated in a similar way, indicating that there is no relationship between the p53 status and G₁ block. Western blot analysis revealed that 1,25D and D-C/S-SB increased the inhibitory phosphorylation levels MEK-1 (P-Thr286), but decreased the levels of activated ERK1/2 (Thr202/Tyr204;Thr185/Tyr187), again without any apparent relationship to the p53 status. Interestingly, the increased levels of p21(Waf1/Cip1) were insufficient to promote a G₁ block in this system, as only cell lines with increased levels of p27(Kip1) and p35Nck5a, an activator of Cdk5, showed a rapid G₁ block. Overall, our data show that the p53-p21 axis is unlikely to have a role in differentiation-associated G₁ block in AML cells with wt p53, and that this block is achieved by several, possibly co-operating but redundant pathways, that include inhibition of MEK-1 by p35Nck5a-activated Cdk5.
Collapse
Affiliation(s)
- Thelma Thompson
- Roche Research Center, Hoffmann-La Roche Inc., Nutley, NJ, USA
| | | | | | | |
Collapse
|
10
|
Hughes PJ, Marcinkowska E, Gocek E, Studzinski GP, Brown G. Vitamin D3-driven signals for myeloid cell differentiation--implications for differentiation therapy. Leuk Res 2009; 34:553-65. [PMID: 19811822 DOI: 10.1016/j.leukres.2009.09.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/05/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Primitive myeloid leukemic cell lines can be driven to differentiate to monocyte-like cells by 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and, therefore, 1,25(OH)(2)D(3) may be useful in differentiation therapy of myeloid leukemia and myelodysplastic syndromes (MDS). Recent studies have provided important insights into the mechanism of 1,25(OH)(2)D(3)-stimulated differentiation. For myeloid progenitors to complete monocytic differentiation a complex network of intracellular signals has to be activated and/or inactivated in a precise temporal and spatial pattern. 1,25(OH)(2)D(3) achieves this change to the 'signaling landscape' by (i) direct genomic modulation of the level of expression of key regulators of cell signaling and differentiation pathways, and (ii) activation of intracellular signaling pathways. An improved understanding of the mode of action of 1,25(OH)(2)D(3) is facilitating the development of new therapeutic regimens.
Collapse
Affiliation(s)
- Philip J Hughes
- School of Immunity and Infection, College of Medical and Dental Sciences, The University of Birmingham, Vincent Drive, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | | | | | | | | |
Collapse
|
11
|
Hughes PJ, Brown G. Interplay between signalling pathways mediates 1,25alpha-dihydroxyvitamin D3-driven monocytic differentiation--JNKs are important. Leuk Res 2009; 33:1298-300. [PMID: 19428105 DOI: 10.1016/j.leukres.2009.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
|
12
|
5-Lipoxygenase inhibitors potentiate 1alpha,25-dihydroxyvitamin D3-induced monocytic differentiation by activating p38 MAPK pathway. Mol Cell Biochem 2009; 330:229-38. [PMID: 19415458 DOI: 10.1007/s11010-009-0138-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 04/17/2009] [Indexed: 01/06/2023]
Abstract
The treatment of human promyelocytic leukemia cell lines HL-60, and to some extent NB-4, with 1alpha,25-dihydroxyvitamin D(3) (VD3) induces differentiation toward the monocytic/macrophage lineage, demonstrated by the increased expression of CD11b and CD14, and the production of opsonized zymosan particles (OZP)-stimulated reactive oxygen species (ROS). Moreover, in more sensitive HL-60 cells, increased expression of 5-lipoxygenase (5-LPO), Mcl-1, IkappaB, and c-Jun, accompanied by the activation of p38 MAPK, was detected. These VD3 effects on HL-60 cell differentiation were significantly potentiated by 5-LPO inhibitors MK-886 and AA-861 and were inverted by SB202190 (SB), a p38 MAPK inhibitor. The inhibition of differentiation by SB was demonstrated by a reduction of CD14 expression and by a decrease in OZP-activated ROS production. These results indicated that p38 MAPK pathway is involved in 5-LPO inhibitors-dependent potentiation of VD3-induced monocytic differentiation.
Collapse
|
13
|
Shabtay A, Sharabani H, Barvish Z, Kafka M, Amichay D, Levy J, Sharoni Y, Uskokovic MR, Studzinski GP, Danilenko M. Synergistic antileukemic activity of carnosic acid-rich rosemary extract and the 19-nor Gemini vitamin D analogue in a mouse model of systemic acute myeloid leukemia. Oncology 2008; 75:203-14. [PMID: 18852491 DOI: 10.1159/000163849] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 06/05/2008] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Differentiation therapy with the hormonal form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1,25D(3)), is a promising approach to treatment of acute myeloid leukemia (AML); however, 1,25D(3) induces hypercalcemia at pharmacologically active doses. We investigated the in vitro and in vivoantileukemic efficacy of combined treatment with non-toxic doses of a low-calcemic 1,25D(3) analogue, 1,25-dihydroxy-21(3-hydroxy-3-methyl-butyl)-19-nor-cholecalciferol (19-nor-Gemini; Ro27-5646), and rosemary plant agents in a mouse model of AML. METHODS Proliferation and differentiation of WEHI-3B D- (WEHI) murine myelomonocytic leukemia cellsin vitro were determined by standard assays. Reactive oxygen species, glutathione and protein expression levels were measured by flow cytometry, enzymatic assay and Western blotting, respectively. Systemic AML was developed by intravenous injection of WEHI cells in syngeneic Balb/c mice. RESULTS 19-nor-Gemini had a higher potency than its parent compounds, Gemini (Ro27-2310) and 1,25D(3), in the induction of differentiation (EC(50) = 0.059 +/- 0.011, 0.275 +/- 0.093 and 0.652 +/- 0.085 nM, respectively) and growth arrest (IC(50) = 0.072 +/- 0.018, 0.165 +/- 0.061 and 0.895 +/- 0.144 nM, respectively) in WEHI cells in vitro, and lower in vivo toxicity. Combined treatment of leukemia-bearing mice with 19-nor-Gemini (injected intraperitoneally) and standardized rosemary extract (mixed with food) resulted in a synergistic increase in survival (from 42.2 +/- 2.5 days in untreated mice to 66.5 +/- 4.2 days, n = 3) and normalization of white blood cell and differential counts. This was consistent with strong cooperative antiproliferative and differentiation effects of low concentrations of 19-nor-Gemini or 1,25D(3) combined with rosemary extract or its major polyphenolic component, carnosic acid, as well as with the antioxidant action of rosemary agents and vitamin D derivatives in WEHI cell cultures. CONCLUSION Combined effectiveness of 1,25D(3) analogues and rosemary agents against mouse AML warrants further exploration of this therapeutic approach in translational models of human leukemia.
Collapse
Affiliation(s)
- Ayelet Shabtay
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jamshidi F, Zhang J, Harrison JS, Wang X, Studzinski GP. Induction of differentiation of human leukemia cells by combinations of COX inhibitors and 1,25-dihydroxyvitamin D3 involves Raf1 but not Erk 1/2 signaling. Cell Cycle 2008; 7:917-24. [PMID: 18414055 DOI: 10.4161/cc.7.7.5620] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Differentiation therapy of cancer is being explored as a potential modality for treatment of myeloid leukemia, and derivatives of vitamin D are gaining prominence as agents for this form of therapy. Cyclooxygenase (COX) inhibitors have been reported to enhance 1,25-dihydroxyvitamin D(3) (1,25D)-induced monocytic differentiation of promyeloblastic HL60 cells, but the mechanisms of this effect are not fully elucidated, and whether this potentiation can occur in other types of myeloid leukemia is not known. We found that combination treatment with 1,25D and non-specific COX inhibitors acetyl salicylic acid (ASA) or indomethacin can robustly potentiate differentiation of other types of human leukemia cells, i.e., U937, THP-1, and that ASA +/- 1,25D is effective in primary AML cultures. Increased cell differentiation is paralleled by arrest of the cells in the G(1) phase of the cell cycle, and by increased phosphorylation of Raf1 and p90RSK1 proteins. However, there is no evidence that this increase in phosphorylation of Raf1 is transmitted through the ERK module of the MAPK signaling cascade. Transfection of small interfering (si) RNA to Raf1 decreased differentiation of U937 cells induced by a combination of ASA or indomethacin with 1,25D. However, phosphorylation levels of ERK1/2, though not of p90RSK, were increased when P-Raf1 levels were decreased by the siRNA, suggesting that in this system the ERK module does not function in the conventional manner. Identification of the strong antiproliferative activity of ASA/1,25D combinations associated with monocytic differentiation has implications for cancer chemoprevention in individuals who have a predisposition to myeloid leukemia.
Collapse
Affiliation(s)
- Farnaz Jamshidi
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | |
Collapse
|