1
|
Phytoestrogens decorated nanocapsules for therapeutic methionine γ-lyase targeted delivery. Biochimie 2023; 209:1-9. [PMID: 36646203 DOI: 10.1016/j.biochi.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The main task of targeted therapy is the selective destruction of cancer cells without affecting normal ones. For these purposes, small molecules and antibodies are used that target specific receptors and proteins or block signaling pathways in tumor cells. The natural phytoestrogens daidzein (Dz) and genistein (Gn) possess binding capacity to estrogen receptors (ER). Methionine γ-lyase (MGL) is promising in two strategies of antitumor therapy: for the elimination of l-methionine, which is necessary for the proliferation of tumor cells, and for the production of cytotoxic dialkyl thiosulfinates in situ. For delivery of MGL-loaded nanocapsules (nanoreactors) to the surface of cancer cells a technique for Dz or Gn incorporation into the shell of polyionic vesicles (PICsomes) was developed. The nanoreactors were characterized by dynamic light scattering and transmission electron microscopy. The enzyme retained its catalytic efficiency inside the decorated PICsomes. The binding of Dz/Gn-nanoreactors to the surface of ER + MCF7 breast adenocarcinoma cells was demonstrated. For the first time an influence of enzyme-loaded PICsomes and their individual components on embryos development was evaluated. The high rate of blastocysts formation (>80%) was observed for all tested components and nanoreactors themselves. A strong inhibitory effect on the early embryonic development of MGL-loaded PICsomes in the presence of S-alkyl-l-cysteine sulfoxide substrates was showed. This proves that the substrates can freely penetrate through the polymer shell of the polyionic vesicle and are cleaved by MGL to form cytotoxic thiosulfinates. The data obtained for phytoestrogens decorated PICsomes may be applied in enzyme therapy of malignant tumors.
Collapse
|
2
|
Abo Qoura L, Morozova E, Kulikova V, Karshieva S, Sokolova D, Koval V, Revtovich S, Demidkina T, Pokrovsky VS. Methionine γ-Lyase-Daidzein in Combination with S-Propyl-L-cysteine Sulfoxide as a Targeted Prodrug Enzyme System for Malignant Solid Tumor Xenografts. Int J Mol Sci 2022; 23:ijms231912048. [PMID: 36233347 PMCID: PMC9569779 DOI: 10.3390/ijms231912048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study was to determine the anticancer effect of dipropyl thiosulfinate produced in situ by the pharmacological pair: (1) conjugated with daidzein C115H methionine γ-lyase (EC 4.4.1.11, C115H MGL-Dz) and (2) the substrate, S-propyl-L-cysteine sulfoxide (propiin) against various solid tumor types in vitro and in vivo. The MTT test was used to calculate IC50 values for HT29, COLO205 and HCT116 (colon cancer); Panc1 and MIA-PaCa2 (pancreatic cancer); and 22Rv1, DU-145 and PC3 (prostate cancer). The most promising effect for colon cancer cells in vitro was observed in HT29 (IC50 = 6.9 µM). The IC50 values for MIA-PaCa2 and Panc1 were 3.4 and 3.8 µM, respectively. Among prostate cancer cells, 22Rv1 was the most sensitive (IC50 = 5.4 µM). In vivo antitumor activity of the pharmacological pair was studied in HT29, SW620, Panc1, MIA-PaCa2 and 22Rv1 subcutaneous xenografts in BALB/c nude mice. The application of C115H MGL-Dz /propiin demonstrated a significant reduction in the tumor volume of Panc1 (TGI 67%; p = 0.004), MIA-PaCa2 (TGI 50%; p = 0.011), HT29 (TGI 51%; p = 0.04) and 22Rv1 (TGI 70%; p = 0.043) xenografts. The results suggest that the combination of C115H MGL-Dz/propiin is able to suppress tumor growth in vitro and in vivo and the use of this pharmacological pair can be considered as a new strategy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Department of Biochemistry, RUDN University, 117198 Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (E.M.); (V.S.P.); Tel.: +7-915-143-03-91 (V.S.P.)
| | - Vitalia Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Saida Karshieva
- Laboratory of Combined Treatment, N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | - Darina Sokolova
- Department of Biochemistry, RUDN University, 117198 Moscow, Russia
- Laboratory of Combined Treatment, N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | - Vasiliy Koval
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svetlana Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatyana Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim S. Pokrovsky
- Department of Biochemistry, RUDN University, 117198 Moscow, Russia
- Laboratory of Combined Treatment, N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Correspondence: (E.M.); (V.S.P.); Tel.: +7-915-143-03-91 (V.S.P.)
| |
Collapse
|
3
|
Daidzein-directed methionine γ-lyase in enzyme prodrug therapy against breast cancer. Biochimie 2022; 201:177-183. [PMID: 35738490 DOI: 10.1016/j.biochi.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Thiosulfinates in situ formed by "pharmacological pair" C115H methionine γ-lyase/S-(allyl/alkyl)-l-cysteine sulfoxides possess cytotoxic activity against various malignant cell lines. To investigate in vivo antitumor activity of thiosulfinates generated directly at the surface of tumor cells, a chemical conjugate between Clostridium novyi C115H methionine γ-lyase (C115H MGL) and isoflavone daidzein was prepared. The binding of conjugate (C115H-Dz) to various breast cancer cell lines was demonstrated, as well as its cytotoxicity in the presence of S-(allyl/alkyl)-l-cysteine sulfoxides. The most promising among thiosulfinates was dipropyl thiosulfinate (IC50 < 0.53 μM). The pharmacokinetic parameters of C115H MGL and C115H-Dz were obtained. Plasma half-lives of the enzyme and conjugated enzyme were 4.4 and 7.2 h, respectively. In vivo antitumor effect of pharmacological pairs on SKBR-3 xenografts was demonstrated. Treatment of tumor-bearing mice with a pair of C115H-Dz/propiin inhibited tumor growth by 85%.
Collapse
|
4
|
Daidzein Activates Akt Pathway to Promote the Proliferation of Female Germline Stem Cells through Upregulating Clec11a. Stem Cell Rev Rep 2022; 18:3021-3032. [PMID: 35655001 DOI: 10.1007/s12015-022-10394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
Female germline stem cells (FGSCs) have been successfully isolated and characterized from postnatal mammalian and human ovarian tissues. However, the effects and mechanisms of action of natural small-molecule compounds on FGSCs are largely unknown. Here, we found that daidzein promoted the viability and proliferation of FGSCs. To elucidate the mechanism underlying this, we performed RNA-Sequence in daidzein-treated FGSCs and controls. The results showed that there were 153 upregulated and 156 downregulated genes in daidzein treatment. We confirmed the expression of some genes related to cell proliferation in the sequencing results by RT-PCR, such as Type C lectin domain family 11 member a (Clec11a), Mucin1 (Muc1), Glutathione peroxidase 3 (Gpx3), and Tet methylcytosine dioxygenase 1 (Tet1). The high expression of Clec11a at the protein level after daidzein treatment was also confirmed by western blotting. Furthermore, recombinant mouse Clec11a (rmClec11a) protein was shown to promote the viability and proliferation of FGSCs. However, knockdown of Clec11a inhibited the viability and proliferation of FGSCs, which could not be rescued by the administration of daidzein. These results indicate that daidzein promoted the viability and proliferation of FGSCs through Clec11a. In addition, both daidzein and rmClec11a activated the Akt signaling pathway in FGSCs. However, Clec11a knockdown inhibited this pathway, which could not be rescued by daidzein administration. Taken together, our findings revealed that daidzein activates the Akt signaling pathway to promote cell viability and proliferation through upregulating Clec11a. This study should deepen our understanding of the developmental mechanism of FGSCs and female infertility.
Collapse
|
5
|
Design of poly-l-glutamic acid embedded mesoporous bioactive glass nanospheres for pH-stimulated chemotherapeutic drug delivery and antibacterial susceptibility. Colloids Surf B Biointerfaces 2021; 202:111700. [DOI: 10.1016/j.colsurfb.2021.111700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
|
6
|
Sirotkin AV, Alwasel SH, Harrath AH. The Influence of Plant Isoflavones Daidzein and Equol on Female Reproductive Processes. Pharmaceuticals (Basel) 2021; 14:ph14040373. [PMID: 33920641 PMCID: PMC8073550 DOI: 10.3390/ph14040373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we explore the current literature on the influence of the plant isoflavone daidzein and its metabolite equol on animal and human physiological processes, with an emphasis on female reproduction including ovarian functions (the ovarian cycle; follicullo- and oogenesis), fundamental ovarian-cell functions (viability, proliferation, and apoptosis), the pituitary and ovarian endocrine regulators of these functions, and the possible intracellular mechanisms of daidzein action. Furthermore, we discuss the applicability of daidzein for the control of animal and human female reproductive processes, and how to make this application more efficient. The existing literature demonstrates the influence of daidzein and its metabolite equol on various nonreproductive and reproductive processes and their disorders. Daidzein and equol can both up- and downregulate the ovarian reception of gonadotropins, healthy and cancerous ovarian-cell proliferation, apoptosis, viability, ovarian growth, follicullo- and oogenesis, and follicular atresia. These effects could be mediated by daidzein and equol on hormone production and reception, reactive oxygen species, and intracellular regulators of proliferation and apoptosis. Both the stimulatory and the inhibitory effects of daidzein and equol could be useful for reproductive stimulation, the prevention and mitigation of cancer development, and the adverse effects of environmental stressors in reproductive biology and medicine.
Collapse
Affiliation(s)
- Alexander V. Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
- Correspondence: ; Tel.: +421-903561120
| | - Saleh Hamad Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 12372, Saudi Arabia; (S.H.A.); (A.H.H.)
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 12372, Saudi Arabia; (S.H.A.); (A.H.H.)
| |
Collapse
|
7
|
Torrens-Mas M, Roca P. Phytoestrogens for Cancer Prevention and Treatment. BIOLOGY 2020; 9:E427. [PMID: 33261116 PMCID: PMC7759898 DOI: 10.3390/biology9120427] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Phytoestrogens are a large group of natural compounds found in more than 300 plants. They have a close structural similarity to estrogens, which allow them to bind to both estrogen receptors (ER), ERα and ERβ, presenting a weak estrogenic activity. Phytoestrogens have been described as antioxidant, anti-inflammatory, anti-thrombotic, anti-allergic, and anti-tumoral agents. Their role in cancer prevention has been well documented, although their impact on treatment efficiency is controversial. Several reports suggest that phytoestrogens may interfere with the effect of anti-cancer drugs through the regulation of oxidative stress and other mechanisms. Furthermore, some phytoestrogens could exert a protective effect on healthy cells, thus reducing the secondary effects of cancer treatment. In this review, we have studied the recent research in this area to find evidence for the role of phytoestrogens in cancer prevention and therapy efficacy.
Collapse
Affiliation(s)
- Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut, Universitat de les Illes Balears, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07010 Palma, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut, Universitat de les Illes Balears, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07010 Palma, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Zahedi P, Yoganathan R, Piquette-Miller M, Allen C. Recent advances in drug delivery strategies for treatment of ovarian cancer. Expert Opin Drug Deliv 2012; 9:567-83. [DOI: 10.1517/17425247.2012.665366] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Chandra P, Noh HB, Won MS, Shim YB. Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosens Bioelectron 2011; 26:4442-9. [PMID: 21612907 DOI: 10.1016/j.bios.2011.04.060] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 12/15/2022]
Abstract
A highly sensitive and selective sensor for daunomycin was developed using phosphatidylserine (PS) and aptamer as bioreceptors. The PS and aptamer were co-immobilized onto gold nanoparticles modified/functionalized [2,2':5',2″-terthiophene-3'-(p-benzoic acid)] (polyTTBA) conducting polymer. Direct electrochemistry of daunomycin was used to fabricate a label free sensor that monitors current at -0.61 V. The formation of each layer was confirmed with XPS, SEM, and QCM. Response of the sensor was compared with and without PS in terms of sensitivity and selectivity. Interaction between the sensor probe and daunomycin was determined with DPV. The experimental parameters affecting sensor performance were optimized in terms of concentration of immobilized aptamer, PS:aptamer ratio, temperature, pH, and reaction times. The dynamic range for daunomycin analysis ranged between 0.1 and 60.0 nM with a detection limit of 52.3 ± 2.1 pM. Sensor was also examined for interference effect of other drugs. The present sensor exhibited long term stability and successfully detected daunomycin in a real human urine spiked with daunomycin.
Collapse
Affiliation(s)
- Pranjal Chandra
- Department of Chemistry and Institute of BioPhysico Sensor Technology, Pusan National University, Busan 609-735, South Korea
| | | | | | | |
Collapse
|
10
|
Appel E, Rabinkov A, Neeman M, Kohen F, Mirelman D. Conjugates of daidzein-alliinase as a targeted pro-drug enzyme system against ovarian carcinoma. J Drug Target 2010; 19:326-35. [DOI: 10.3109/1061186x.2010.504265] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Migalovich HS, Kalchenko V, Nevo N, Meir G, Kohen F, Neeman M. Harnessing competing endocytic pathways for overcoming the tumor-blood barrier: magnetic resonance imaging and near-infrared imaging of bifunctional contrast media. Cancer Res 2009; 69:5610-7. [PMID: 19509228 DOI: 10.1158/0008-5472.can-08-4967] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, often diagnosed at advanced stage leading to poor prognosis. In the study reported here, magnetic resonance imaging and near-infrared reflectance imaging were applied for in vivo analysis of two competing endocytic pathways affecting retention of bifunctional daidzein-bovine serum albumin (BSA)-based contrast media by human epithelial ovarian carcinoma cells. Suppression of caveolae-mediated uptake using nystatin or by BSA competition significantly enhanced daidzein-BSA-GdDTPA/CyTE777 uptake by tumor cells in vitro. In vivo, perivascular myofibroblasts generated an effective perivascular barrier excluding delivery of BSA-GdDTPA/CyTE777 to tumor cells. The ability to manipulate caveolae-mediated sequestration of albumin by perivascular tumor myofibroblasts allowed us to effectively overcome this tumor-stroma barrier, increasing delivery of daidzein-BSA-GdDTPA/CyTE777 to the tumor cells in tumor xenografts. Thus, both in vitro and in vivo, endocytosis of daidzein-BSA-GdDTPA/CyTE777 by ovarian carcinoma cells was augmented by albumin or by nystatin. In view of the cardinal role of albumin in affecting the availability and pharmacokinetics of drugs, this approach could potentially also facilitate the delivery of therapeutics and contrast media to tumor cells.
Collapse
|