1
|
Rollick NC, Lemmex DB, Ono Y, Reno CR, Hart DA, Lo IK, Thornton GM. Gene-expression changes in knee-joint tissues with aging and menopause: implications for the joint as an organ. Clin Interv Aging 2018. [PMID: 29535510 PMCID: PMC5840269 DOI: 10.2147/cia.s151453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background When considering the “joint as an organ”, the tissues in a joint act as complementary components of an organ, and the “set point” is the cellular activity for homeostasis of the joint tissues. Even in the absence of injury, joint tissues have adaptive responses to processes, like aging and menopause, which result in changes to the set point. Purpose The purpose of this study in a preclinical model was to investigate age-related and menopause-related changes in knee-joint tissues with the hypothesis that tissues will change in unique ways that reflect their differing contributions to maintaining joint function (as measured by joint laxity) and the differing processes of aging and menopause. Methods Rabbit knee-joint tissues from three groups were evaluated: young adult (gene expression, n=8; joint laxity, n=7; water content, n=8), aging adult (gene expression, n=6; joint laxity, n=7; water content, n=5), and menopausal adult (gene expression, n=8; joint laxity, n=7; water content, n=8). Surgical menopause was induced with ovariohysterectomy surgery and gene expression was assessed using reverse-transcription quantitative polymerase chain reaction. Results Aging resulted in changes to 37 of the 150 gene–tissue combinations evaluated, and menopause resulted in changes to 39 of the 150. Despite the similar number of changes, only eleven changes were the same in both aging and menopause. No differences in joint laxity were detected comparing young adult rabbits with aging adult rabbits or with menopausal adult rabbits. Conclusion Aging and menopause affected the gene-expression patterns of the tissues of the knee joint differently, suggesting unique changes to the set point of the knee. Interestingly, aging and menopause did not affect knee-joint laxity, suggesting that joint function was maintained, despite changes in gene expression. Taken together, these findings support the theory of the joint as an organ where the tissues of the joint adapt to maintain joint function.
Collapse
Affiliation(s)
- Natalie C Rollick
- McCaig Institute for Bone and Joint Health, Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Devin B Lemmex
- McCaig Institute for Bone and Joint Health, Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Yohei Ono
- McCaig Institute for Bone and Joint Health, Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada.,Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Carol R Reno
- McCaig Institute for Bone and Joint Health, Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - David A Hart
- McCaig Institute for Bone and Joint Health, Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Ian Ky Lo
- McCaig Institute for Bone and Joint Health, Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Gail M Thornton
- McCaig Institute for Bone and Joint Health, Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada.,Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Ayala EME, Aragón MA. Effect of sexual steroids on boar kinematic sperm subpopulations. Cytometry A 2017; 91:1096-1103. [PMID: 28940889 DOI: 10.1002/cyto.a.23246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/02/2017] [Accepted: 08/29/2017] [Indexed: 11/06/2022]
Abstract
Here, we show the effects of sexual steroids, progesterone, testosterone, or estradiol on motility parameters of boar sperm. Sixteen commercial seminal doses, four each of four adult boars, were analyzed using computer assisted sperm analysis (CASA). Mean values of motility parameters were analyzed by bivariate and multivariate statistics. Principal component analysis (PCA), followed by hierarchical clustering, was applied on data of motility parameters, provided automatically as intervals by the CASA system. Effects of sexual steroids were described in the kinematic subpopulations identified from multivariate statistics. Mean values of motility parameters were not significantly changed after addition of sexual steroids. Multivariate graphics showed that sperm subpopulations were not sensitive to the addition of either testosterone or estradiol, but sperm subpopulations responsive to progesterone were found. Distribution of motility parameters were wide in controls but sharpened at distinct concentrations of progesterone. We conclude that kinematic sperm subpopulations responsive to progesterone are present in boar semen, and these subpopulations are masked in evaluations of mean values of motility parameters. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- E M E Ayala
- Laboratorio de Pubertad, Facultad de Estudios Superiores Zaragoza, UNAM. AP 9-020, Unidad de Investigación en Biología de la Reproducción, Distrito Federal, CP 15000, México
| | - M A Aragón
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54090, México
| |
Collapse
|
3
|
Lemmex DB, Ono Y, Reno CR, Hart DA, Lo IKY, Thornton GM. Increased lubricin/proteoglycan 4 gene expression and decreased modulus in medial collateral ligaments following ovariohysterectomy in the adult rabbit: Evidence consistent with aging. J Biomech 2015; 49:382-7. [PMID: 26776933 DOI: 10.1016/j.jbiomech.2015.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/01/2015] [Accepted: 12/16/2015] [Indexed: 11/17/2022]
Abstract
This study investigated whether ovariohysterectomy (OVH) surgery to induce menopause resulted in changes to modulus, failure strain and lubricin/proteoglycan 4 (PRG4) gene expression in rabbit medial collateral ligaments (MCLs), similar to aging (Thornton et al., 2015a). The MCLs from adult rabbits that underwent OVH surgery as adolescents (15-week-old) and adults (1-year-old) were compared by evaluating mechanical behaviour (adolescent OVH, n=8; adult OVH, n=7; normal, n=7), gene expression (adolescent OVH, n=9; adult OVH, n=8; normal, n=8), and collagen and glycosaminoglycan (adolescent OVH, n=9; adult OVH, n=8; normal, n=8) and water (adolescent OVH, n=9; adult OVH, n=8; normal, n=8) content. Mechanical behaviour evaluated cyclic, static and total creep strain, and ultimate tensile strength, modulus and failure strain. The RT-qPCR assessed mRNA levels for matrix regulatory genes. Adult OVH MCLs exhibited increased cyclic creep and failure strain, and decreased modulus with increased mRNA levels for lubricin/PRG4 and collagen I compared with normal MCLs. Adolescent OVH MCLs exhibited increased cyclic, static and total creep strain with decreased mRNA levels for the progesterone receptor. Lubricin/PRG4 plays a role in the lubrication of collagen fascicles which is likely related to the decreased modulus and increased failure strain observed in ligaments from adult OVH rabbits. Progesterone and its receptor are thought to play a role in the stretching of ligaments in pelvic organ prolapse and pregnancy which is likely related to the increase in creep strain observed in ligaments from adolescent OVH rabbits. Ovariohysterectomy in adult rabbits resulted in changes that were consistent with the aging MCL.
Collapse
Affiliation(s)
- Devin B Lemmex
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Yohei Ono
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada; Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Carol R Reno
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Ian K Y Lo
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Gail M Thornton
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada; Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Welsh TN, Hirst JJ, Palliser H, Zakar T. Progesterone receptor expression declines in the guinea pig uterus during functional progesterone withdrawal and in response to prostaglandins. PLoS One 2014; 9:e105253. [PMID: 25157946 PMCID: PMC4144885 DOI: 10.1371/journal.pone.0105253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/22/2014] [Indexed: 11/21/2022] Open
Abstract
Progesterone withdrawal is essential for parturition, but the mechanism of this pivotal hormonal change is unclear in women and other mammals that give birth without a pre-labor drop in maternal progesterone levels. One possibility suggested by uterine tissue analyses and cell culture models is that progesterone receptor levels change at term decreasing the progesterone responsiveness of the myometrium, which causes progesterone withdrawal at the functional level and results in estrogen dominance enhancing uterine contractility. In this investigation we have explored whether receptor mediated functional progesterone withdrawal occurs during late pregnancy and labor in vivo. We have also determined whether prostaglandins that induce labor cause functional progesterone withdrawal by altering myometrial progesterone receptor expression. Pregnant guinea pigs were used, since this animal loses progesterone responsiveness at term and gives birth in the presence of high maternal progesterone level similarly to primates. We found that progesterone receptor mRNA and protein A and B expression decreased in the guinea pig uterus during the last third of gestation and in labor. Prostaglandin administration reduced while prostaglandin synthesis inhibitor treatment increased progesterone receptor A protein abundance. Estrogen receptor-1 protein levels remained unchanged during late gestation, in labor and after prostaglandin or prostaglandin synthesis inhibitor administration. Steroid receptor levels were higher in the non-pregnant than in the pregnant uterine horns. We conclude that the decreasing expression of both progesterone receptors A and B is a physiological mechanism of functional progesterone withdrawal in the guinea pig during late pregnancy and in labor. Further, prostaglandins administered exogenously or produced endogenously stimulate labor in part by suppressing uterine progesterone receptor A expression, which may cause functional progesterone withdrawal, promote estrogen dominance and foster myometrial contractions.
Collapse
Affiliation(s)
- Toni N. Welsh
- Department of Obstetrics and Gynaecology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Mothers and Babies Research Centre, New Lambton Heights, New South Wales, Australia
| | - Jonathan J. Hirst
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Mothers and Babies Research Centre, New Lambton Heights, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Hannah Palliser
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Mothers and Babies Research Centre, New Lambton Heights, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Tamas Zakar
- Department of Obstetrics and Gynaecology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Mothers and Babies Research Centre, New Lambton Heights, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
5
|
Diao H, Aplin JD, Xiao S, Chun J, Li Z, Chen S, Ye X. Altered spatiotemporal expression of collagen types I, III, IV, and VI in Lpar3-deficient peri-implantation mouse uterus. Biol Reprod 2010; 84:255-65. [PMID: 20864640 DOI: 10.1095/biolreprod.110.086942] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Lpar3 is upregulated in the preimplantation uterus, and deletion of Lpar3 leads to delayed uterine receptivity in mice. Microarray analysis revealed that there was higher expression of Col3a1 and Col6a3 in the Preimplantation Day 3.5 Lpar3(-/-) uterus compared to Day 3.5 wild-type (WT) uterus. Since extracellular matrix (ECM) remodeling is indispensable during embryo implantation, and dynamic spatiotemporal alteration of specific collagen types is part of this process, this study aimed to characterize the expression of four main uterine collagen types: fibril-forming collagen (COL) I and COL III, basement membrane COL IV, and microfibrillar COL VI in the peri-implantation WT and Lpar3(-/-) uterus. An observed delay of COL III and COL VI clearance in the Lpar3(-/-) uterus may be associated with higher preimplantation expression of Col3a1 and Col6a3. There was also delayed clearance of COL I and delayed deposition of COL IV in the decidual zone in the Lpar3(-/-) uterus. These changes were different from the effects of 17beta-estradiol and progesterone on uterine collagen expression in ovariectomized WT uterus, indicating that the altered collagen expression in Lpar3(-/-) uterus is unlikely to be a result of alterations in ovarian hormones. Decreased expression of several genes encoding matrix-degrading metallo- and serine proteinases was observed in the Lpar3(-/-) uterus. These results demonstrate that pathways downstream of LPA3 are involved in the dynamic remodeling of ECM in the peri-implantation uterus.
Collapse
Affiliation(s)
- Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Palliser HK, Zakar T, Symonds IM, Hirst JJ. Progesterone Receptor Isoform Expression in the Guinea Pig Myometrium From Normal and Growth Restricted Pregnancies. Reprod Sci 2010; 17:776-82. [DOI: 10.1177/1933719110371517] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hannah K. Palliser
- School of Biomedical Sciences, University of Newcastle, Newcastle, New South Wales, Australia, Mothers and Babies Research Centre, University of Newcastle, Newcastle, New South Wales, Australia,
| | - Tamas Zakar
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia, Mothers and Babies Research Centre, University of Newcastle, Newcastle, New South Wales, Australia
| | - Ian M. Symonds
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia, Mothers and Babies Research Centre, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jonathan J. Hirst
- School of Biomedical Sciences, University of Newcastle, Newcastle, New South Wales, Australia, Mothers and Babies Research Centre, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|