1
|
Liu R, Yu X, Chen X, Zhong H, Liang C, Xu X, Xu W, Cheng Y, Wang W, Yu L, Wu Y, Yan N, Hu X. Individual factors define the overall effects of dietary genistein exposure on breast cancer patients. Nutr Res 2019; 67:1-16. [DOI: 10.1016/j.nutres.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/03/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
|
2
|
Delman DM, Fabian CJ, Kimler BF, Yeh H, Petroff BK. Effects of Flaxseed Lignan Secoisolariciresinol Diglucosideon Preneoplastic Biomarkers of Cancer Progression in a Model of Simultaneous Breast and Ovarian Cancer Development. Nutr Cancer 2015; 67:857-64. [PMID: 26010915 DOI: 10.1080/01635581.2015.1042549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Breast cancer prevention efforts are focused increasingly on potentially beneficial dietary modifications due to their ease of implementation and wide acceptance. Secoisolariciresinol diglucoside (SDG) is a lignan found in high concentration in flaxseed that may have selective estrogen receptor modulator-like effects resulting in antiestrogenic activity in a high estrogen environment. In parallel with a human phase II prevention trial, female ACI rats (n = 8-10/group) received 0, 10, or 100 ppm SDG in the feed. The 100 ppm SDG treatment produced similar blood lignan levels as those observed in our human pilot study. Mammary and ovarian cancer progression were induced using local ovarian DMBA treatment and subcutaneous sustained release 17β-estradiol administered starting at 7 weeks of age. Mammary gland and ovarian tissues were collected at 3 mo after initiation of treatment and examined for changes in epithelial cell proliferation (Ki-67, cell counts), histopathology, and dysplasia scores, as well as expression of selected genes involved in proliferation, estrogen signaling, and cell adhesion. Treatment with SDG normalized several biomarkers in mammary gland tissue (dysplasia, cell number, and expression of several genes) that had been altered by carcinogen. There is no indication that SDG promotes preneoplastic progression in the ovarian epithelium.
Collapse
Affiliation(s)
- Devora M Delman
- a Breast Cancer Prevention Center, Department of Internal Medicine , University of Kansas Medical Center , Kansas City , Kansas , USA
| | | | | | | | | |
Collapse
|
3
|
DiMarco-Crook C, Xiao H. Diet-based strategies for cancer chemoprevention: the role of combination regimens using dietary bioactive components. Annu Rev Food Sci Technol 2015; 6:505-26. [PMID: 25884285 DOI: 10.1146/annurev-food-081114-110833] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemopreventive agents that the general population can consume for prolonged periods of time with minimal risk of any side effects are of great interest to all in search of a solution to the pervasive incidence of cancer. Dietary bioactive components have been found to modulate many deregulated molecular pathways associated with the initiation and progression of different types of cancer. Combination regimens with dietary bioactive components are a promising strategy for cancer chemoprevention because they may offer enhanced protective effects against cancer development but cause little or no adverse effects. This article provides an overview of studies examining the combination of dietary bioactive components for the chemoprevention of major types of cancer. A better understanding of existing research on the combination of dietary bioactive components will provide an important basis for the rational design of future combination studies and the successful development of cancer chemoprevention strategies.
Collapse
|
4
|
Growth and gene expression differ over time in alpha-linolenic acid treated breast cancer cells. Exp Cell Res 2015; 333:147-54. [PMID: 25743093 DOI: 10.1016/j.yexcr.2015.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 01/29/2023]
Abstract
SCOPE Heterogeneity of breast cancer (BC) subtypes makes BC treatment difficult. α-linolenic acid (ALA), rich in flaxseed oil, has been shown to reduce growth and increase apoptosis in several BC cell lines, but the mechanism of action needs further understanding. METHODS AND RESULTS Four BC cell lines (MCF-7, BT-474, MDA-MB-231 and MDA-MB-468) were incubated with 75 μM ALA+1 nM 17-β estradiol (E2) or 1 nM E2 only (control) for 24 h. MDA-MB-231 cells were additionally incubated at 6 and 12 h. Viable cell number was measured, and expression of genes related to BC (signaling pathways, cell cycle, apoptosis) was quantified by real-time PCR array. There was a reduction in growth of all ALA treated cell lines after 24 h, and in MDA-MB-231 cells this was time-dependent. Many genes were altered after 24 h, and these differed between cell lines. In MDA-MB-231 cells, several gene expression changes were time-dependent. CONCLUSIONS ALA reduces growth of BC cell lines, by modifying signaling pathways, which differ between BC molecular subtypes. The ALA effect on gene expression is dynamic and changes over time, indicating the significance of incubation period in detecting gene changes.
Collapse
|
5
|
Villeneuve S, Power KA, Guévremont E, Mondor M, Tsao R, Wanasundara JP, Zarepoor L, Mercier S. Effect of a Short-Time Germination Process on the Nutrient Composition, Microbial Counts and Bread-Making Potential of Whole Flaxseed. J FOOD PROCESS PRES 2014. [DOI: 10.1111/jfpp.12385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sébastien Villeneuve
- Food Research and Development Centre; Agriculture and Agri-Food Canada; 3600 Casavant Blvd. West Saint-Hyacinthe Quebec J2S 8E3 Canada
- Institute of Nutrition and Functional Foods (INAF); Laval University; Quebec Quebec G1K 7P4 Canada
| | - Krista A. Power
- Guelph Food Research Centre; Agriculture and Agri-Food Canada; Guelph Ontario Canada
| | - Evelyne Guévremont
- Food Research and Development Centre; Agriculture and Agri-Food Canada; 3600 Casavant Blvd. West Saint-Hyacinthe Quebec J2S 8E3 Canada
| | - Martin Mondor
- Food Research and Development Centre; Agriculture and Agri-Food Canada; 3600 Casavant Blvd. West Saint-Hyacinthe Quebec J2S 8E3 Canada
- Institute of Nutrition and Functional Foods (INAF); Laval University; Quebec Quebec G1K 7P4 Canada
| | - Rong Tsao
- Guelph Food Research Centre; Agriculture and Agri-Food Canada; Guelph Ontario Canada
| | | | - Leila Zarepoor
- Guelph Food Research Centre; Agriculture and Agri-Food Canada; Guelph Ontario Canada
| | - Samuel Mercier
- Food Research and Development Centre; Agriculture and Agri-Food Canada; 3600 Casavant Blvd. West Saint-Hyacinthe Quebec J2S 8E3 Canada
| |
Collapse
|
6
|
Zarepoor L, Lu JT, Zhang C, Wu W, Lepp D, Robinson L, Wanasundara J, Cui S, Villeneuve S, Fofana B, Tsao R, Wood GA, Power KA. Dietary flaxseed intake exacerbates acute colonic mucosal injury and inflammation induced by dextran sodium sulfate. Am J Physiol Gastrointest Liver Physiol 2014; 306:G1042-55. [PMID: 24763556 DOI: 10.1152/ajpgi.00253.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flaxseed (FS), a dietary oilseed, contains a variety of anti-inflammatory bioactives, including fermentable fiber, phenolic compounds (lignans), and the n-3 polyunsaturated fatty acid (PUFA) α-linolenic acid. The objective of this study was to determine the effects of FS and its n-3 PUFA-rich kernel or lignan- and soluble fiber-rich hull on colitis severity in a mouse model of acute colonic inflammation. C57BL/6 male mice were fed a basal diet (negative control) or a basal diet supplemented with 10% FS, 6% kernel, or 4% hull for 3 wk prior to and during colitis induction via 5 days of 2% (wt/vol) dextran sodium sulfate (DSS) in their drinking water (n = 12/group). An increase in anti-inflammatory metabolites (hepatic n-3 PUFAs, serum mammalian lignans, and cecal short-chain fatty acids) was associated with consumption of all FS-based diets, but not with anti-inflammatory effects in DSS-exposed mice. Dietary FS exacerbated DSS-induced acute colitis, as indicated by a heightened disease activity index and an increase in colonic injury and inflammatory biomarkers [histological damage, apoptosis, myeloperoxidase, inflammatory cytokines (IL-6 and IL-1β), and NF-κB signaling-related genes (Nfkb1, Ccl5, Bcl2a1a, Egfr, Relb, Birc3, and Atf1)]. Additionally, the adverse effect of the FS diet was extended systemically, as serum cytokines (IL-6, IFNγ, and IL-1β) and hepatic cholesterol levels were increased. The adverse effects of FS were not associated with alterations in fecal microbial load or systemic bacterial translocation (endotoxemia). Collectively, this study demonstrates that although consumption of a 10% FS diet enhanced the levels of n-3 PUFAs, short-chain polyunsaturated fatty acids, and lignans in mice, it exacerbated DSS-induced colonic injury and inflammation.
Collapse
Affiliation(s)
- Leila Zarepoor
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada; Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Jenifer T Lu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada; Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Claire Zhang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada; Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Wenqing Wu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada
| | - Dion Lepp
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada
| | - Lindsay Robinson
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | | | - Steve Cui
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada
| | | | - Bourlaye Fofana
- Crops and Livestock Research Centre, AAFC, Charlottetown, Prince Edward Island, Canada; and
| | - Rong Tsao
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Krista A Power
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada; Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada;
| |
Collapse
|
7
|
Mason JK, Thompson LU. Flaxseed and its lignan and oil components: can they play a role in reducing the risk of and improving the treatment of breast cancer? Appl Physiol Nutr Metab 2014; 39:663-78. [DOI: 10.1139/apnm-2013-0420] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Flaxseed (FS), rich in the phytoestrogen lignans and α-linolenic acid-rich oil, has been suggested to have an anticancer effect. Questions remain whether FS and its lignan and oil components are effective in reducing breast cancer risk and tumour growth, and can interact beneficially with breast cancer drugs. To find answers, in vitro, animal, observational, and clinical studies on FS and its lignan and oil components were reviewed. The majority of studies in various rodent models show that 2.5%–10% FS diet or the equivalent amount of lignan or oil reduces tumour growth. Ten percent FS and equivalent lignans do not interfere with but rather increase the effectiveness of tamoxifen (80 mg/day) while the 4% FS oil increases trastuzumab/Herceptin (2.5 mg/kg) effectiveness. Observational studies show that FS and lignan intake, urinary excretion, or serum levels are associated with reduced risk, particularly in postmenopausal women. Lignans reduce breast cancer and all-cause mortality by 33%–70% and 40%–53%, respectively, without reducing tamoxifen effectiveness. Clinical trials show that FS (25 g/day with 50 mg lignans; 32 days) reduces tumour growth in breast cancer patients and lignans (50 mg/day; 1 year) reduces risk in premenopausal women. Mechanisms include decreased cell proliferation and angiogenesis and increased apoptosis through modulation of estrogen metabolism and estrogen receptor and growth factor receptor signalling pathways. More clinical trials are needed but current overall evidence indicates that FS and its components are effective in the risk reduction and treatment of breast cancer and safe for consumption by breast cancer patients.
Collapse
Affiliation(s)
- Julie K. Mason
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Lilian U. Thompson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
8
|
|
9
|
Cardoso Carraro JC, Dantas MIDS, Espeschit ACR, Martino HSD, Ribeiro SMR. Flaxseed and Human Health: Reviewing Benefits and Adverse Effects. FOOD REVIEWS INTERNATIONAL 2012. [DOI: 10.1080/87559129.2011.595025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Truan JS, Chen JM, Thompson LU. Comparative effects of sesame seed lignan and flaxseed lignan in reducing the growth of human breast tumors (MCF-7) at high levels of circulating estrogen in athymic mice. Nutr Cancer 2011; 64:65-71. [PMID: 22136581 DOI: 10.1080/01635581.2012.630165] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Flaxseed (FS) has a breast tumor-reducing effect, possibly because of its high content of secoisolariciresinol diglucoside (SDG) lignan. Sesame seed (SS) is rich in the lignan sesamin (SES) but is non-protective. Both lignans are metabolized to estrogen-like enterodiol and enterolactone. The objective of this study was to differentiate the effects of SDG and SES on established human estrogen receptor-positive breast tumors (MCF-7) in athymic mice with high serum estrogen to help explain the different effects of FS and SS. Mice were fed for 8 wk the basal diet (BD, control) or BD supplemented with 1 g/kg SDG or SES. SES reduced palpable tumor size by 23% compared to control, whereas SDG did not differ from SES or control. Both treatments reduced tumor cell proliferation, but only SES increased apoptosis. SDG and SES reduced human epidermal growth factor receptor 2 and endothelial growth factor receptor expressions, but only SES reduced downstream pMAPK. Neither treatment affected IGF-1R, vascular endothelial growth factor receptor-2, Akt, pAkt, or MAPK of the growth factor signaling pathway. Thus, at high serum estrogen levels, SDG may not account for the tumor reducing effect of FS. SES was more effective than SDG in reducing breast tumor growth, but its effect may have been lost when consumed as a component of SS.
Collapse
Affiliation(s)
- Jennifer S Truan
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
11
|
Yerushalmi R, Gelmon KA, Leung S, Gao D, Cheang M, Pollak M, Turashvili G, Gilks BC, Kennecke H. Insulin-like growth factor receptor (IGF-1R) in breast cancer subtypes. Breast Cancer Res Treat 2011; 132:131-42. [DOI: 10.1007/s10549-011-1529-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 04/16/2011] [Indexed: 01/22/2023]
|
12
|
Dave B, Wynne R, Su Y, Korourian S, Chang JC, Simmen RCM. Enhanced mammary progesterone receptor-A isoform activity in the promotion of mammary tumor progression by dietary soy in rats. Nutr Cancer 2010; 62:774-82. [PMID: 20661826 DOI: 10.1080/01635581.2010.494334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dietary contribution to breast cancer risk, recurrence, and progression remains incompletely understood. Increased consumption of soy and soy isoflavones is associated with reduced mammary cancer susceptibility in women and in rodent models of carcinogenesis. In rats treated with N-methyl-N-nitrosourea, dietary intake of soy protein isolate (SPI) reduced mammary tumor occurrence but increased incidence of more invasive tumors in tumored rats, relative to the control diet casein. Here we evaluated whether mammary tumor progression in tumor-bearing rats lifetime exposed to SPI is associated with deregulated progesterone receptor (PR) isoform expression. In histologically normal mammary glands of rats with invasive ductal carcinoma lesions, PR-A protein levels were higher for SPI- than casein-fed rats, whereas PR-B was undetectable for both groups. Increased mammary PR-A expression was associated with higher transforming growth factor-beta1, stanniocalcin-1, and CD44 transcript levels; lower E-cadherin and estrogen receptor-alpha expression; and reduced apoptotic status in ductal epithelium. Serum progesterone (ng/ml) (CAS: 25.94 +/- 3.81; SPI: 13.19 +/- 2.32) and estradiol (pg/ml) (CAS: 27.9 +/- 4.49; SPI: 68.48 +/- 23.87) levels differed with diet. However, sera from rats of both diet groups displayed comparable mammosphere-forming efficiency in human MCF-7 cells. Thus, soy-rich diets may influence the development of more aggressive tumors by enhancing PR-A-dependent signaling in premalignant breast tissues.
Collapse
Affiliation(s)
- Bhuvanesh Dave
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, and Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
| | | | | | | | | | | |
Collapse
|
13
|
Fabian CJ, Kimler BF, Zalles CM, Klemp JR, Petroff BK, Khan QJ, Sharma P, Setchell KDR, Zhao X, Phillips TA, Metheny T, Hughes JR, Yeh HW, Johnson KA. Reduction in Ki-67 in benign breast tissue of high-risk women with the lignan secoisolariciresinol diglycoside. Cancer Prev Res (Phila) 2010; 3:1342-50. [PMID: 20724470 PMCID: PMC2955777 DOI: 10.1158/1940-6207.capr-10-0022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Preclinical and correlative studies suggest reduced breast cancer with higher lignan intake or blood levels. We conducted a pilot study of modulation of risk biomarkers for breast cancer in premenopausal women after administration of the plant lignan secoisolariciresinol given as the diglycoside (SDG). Eligibility criteria included regular menstrual cycles, no oral contraceptives, a >3-fold increase in 5-year risk, and baseline Ki-67 of ≥2% in areas of hyperplasia in breast tissue sampled by random periareolar fine-needle aspiration (RPFNA) during the follicular phase of the menstrual cycle. SDG (50 mg/d) was given for 12 months, followed by repeat RPFNA. The primary end point was change in Ki-67. Secondary end points included change in cytomorphology, mammographic breast density, serum bioavailable estradiol and testosterone insulin-like growth factor-I and IGF-binding protein-3, and plasma lignan levels. Forty-five of 49 eligible women completed the study with excellent compliance (median = 96%) and few serious side effects (4% grade 3). Median plasma enterolactone increased ∼9-fold, and total lignans increased 16-fold. Thirty-six (80%) of the 45 evaluable subjects showed a decrease in Ki-67, from a median of 4% (range, 2-16.8%) to 2% (range, 0-15.2%; P < 0.001, Wilcoxon signed rank test). A decrease from baseline in the proportion of women with atypical cytology (P = 0.035) was also observed. Based on favorable risk biomarker modulation and lack of adverse events, we are initiating a randomized trial of SDG versus placebo in premenopausal women.
Collapse
Affiliation(s)
- Carol J Fabian
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160-7418, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Truan JS, Chen JM, Thompson LU. Flaxseed oil reduces the growth of human breast tumors (MCF-7) at high levels of circulating estrogen. Mol Nutr Food Res 2010; 54:1414-21. [DOI: 10.1002/mnfr.200900521] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Chen J, Saggar JK, Corey P, Thompson LU. Flaxseed and pure secoisolariciresinol diglucoside, but not flaxseed hull, reduce human breast tumor growth (MCF-7) in athymic mice. J Nutr 2009; 139:2061-6. [PMID: 19776177 DOI: 10.3945/jn.109.112508] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous studies have shown that dietary flaxseed (FS) can reduce the growth of established human breast tumors in athymic mice with low circulating estrogen concentrations. In this study, we determined the effect of FS compared with pure lignan at the level it is present in FS [secoisolariciresinol diglucoside (SDG)] and to the lignan-rich fraction [FS hull (FH)] on human breast tumor growth and their potential mechanisms of action. Ovariectomized, athymic mice, each with an implanted 17 beta-estradiol (E2) pellet (0.36 mg), were injected with human estrogen receptor (ER) positive breast cancer cells (MCF-7). When tumors were established, the E2 pellet was removed. Mice were fed either the control basal diet (BD), FS (100 g/kg diet), SDG (1 g/kg diet), or FH (18 g/kg diet) for 8 wk. Compared with the BD, FS and SDG significantly decreased the palpable tumor size, but effects of FS, SDG, and FH did not differ from one another. All treatments significantly inhibited cell proliferation, but only FS and SDG induced significantly higher apoptosis. Both FS and SDG significantly decreased mRNA expressions of Bcl2, cyclin D1, pS2, ERalpha, and ERbeta, epidermal growth factor receptor, and insulin-like growth factor receptor. FS also reduced human epidermal growth factor receptor 2 mRNA and SDG decreased phospho-specific mitogen-activated protein kinase expression. FH did not significantly reduce these biomarkers. In conclusion, pure SDG has a similar effect as FS in reducing tumor growth and in mechanisms of action, including downregulating ER- and growth factor-mediated cell signaling. The lesser effects of FH indicate a need for a higher dose to be more effective.
Collapse
Affiliation(s)
- Jianmin Chen
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
Anderson BM, Ma DWL. Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis 2009; 8:33. [PMID: 19664246 PMCID: PMC3224740 DOI: 10.1186/1476-511x-8-33] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 08/10/2009] [Indexed: 12/14/2022] Open
Abstract
N-3 Polyunsaturated fatty acids have been shown to have potential beneficial effects for chronic diseases including cancer, insulin resistance and cardiovascular disease. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in particular have been studied extensively, whereas substantive evidence for a biological role for the precursor, alpha-linolenic acid (ALA), is lacking. It is not enough to assume that ALA exerts effects through conversion to EPA and DHA, as the process is highly inefficient in humans. Thus, clarification of ALA's involvement in health and disease is essential, as it is the principle n-3 polyunsaturated fatty acid consumed in the North American diet and intakes of EPA and DHA are typically very low. There is evidence suggesting that ALA, EPA and DHA have specific and potentially independent effects on chronic disease. Therefore, this review will assess our current understanding of the differential effects of ALA, EPA and DHA on cancer, insulin resistance, and cardiovascular disease. Potential mechanisms of action will also be reviewed. Overall, a better understanding of the individual role for ALA, EPA and DHA is needed in order to make appropriate dietary recommendations regarding n-3 polyunsaturated fatty acid consumption.
Collapse
Affiliation(s)
- Breanne M Anderson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada.
| | | |
Collapse
|
17
|
Baek SJ, Mcentee MF, Legendre AM. Review Paper: Cancer Chemopreventive Compounds and Canine Cancer. Vet Pathol 2009; 46:576-88. [DOI: 10.1354/vp.08-vp-0238-b-rev] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Canine cancer has become more prevalent in recent years because of increased life expectancy and greater attention to the health of pets. The range of cancers seen in dogs is as diverse as that in human patients, and despite more intensive therapeutic interventions, fatality rates remain unacceptably high in both species. Chemoprevention is therefore an important means of confronting this disease. Because domestic pets share our environment, greater cross-application and study of the protumorigenic and antitumorigenic factors in our shared environment will benefit all species, leading to the development of new families of less toxic antitumorigenic compounds based on novel and established molecular targets. Currently, the most interesting cancer preventive agents are nonsteroidal anti-inflammatory drugs, peroxisome proliferator-activated receptor-γ ligands, and dietary compounds. This article provides an overview of what is known about how these agents affect molecular signaling in neoplastic disease, with reference to reported application and/or study in dogs where available.
Collapse
Affiliation(s)
- S. J. Baek
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| | - M. F. Mcentee
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| | - A. M. Legendre
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| |
Collapse
|