1
|
Identification of the EdcR Estrogen-Dependent Repressor in Caenibius tardaugens NBRC 16725: Construction of a Cellular Estradiol Biosensor. Genes (Basel) 2021; 12:genes12121846. [PMID: 34946795 PMCID: PMC8700777 DOI: 10.3390/genes12121846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 01/14/2023] Open
Abstract
In this work, Caenibius tardaugens NBRC 16725 (strain ARI-1) (formerly Novosphingobium tardaugens) was isolated due to its capacity to mineralize estrogenic endocrine disruptors. Its genome encodes the edc genes cluster responsible for the degradation of 17β-estradiol, consisting of two putative operons (OpA and OpB) encoding the enzymes of the upper degradation pathway. Inside the edc cluster, we identified the edcR gene encoding a TetR-like protein. Genetic studies carried out with C. tardaugens mutants demonstrated that EdcR represses the promoters that control the expression of the two operons. These genetic analyses have also shown that 17β-estradiol and estrone, the second intermediate of the degradation pathway, are the true effectors of EdcR. This regulatory system has been heterologously expressed in Escherichia coli, foreseeing its use to detect estrogens in environmental samples. Genome comparisons have identified a similar regulatory system in the edc cluster of Altererythrobacter estronivorus MHB5, suggesting that this regulatory arrangement has been horizontally transferred to other bacteria.
Collapse
|
2
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
3
|
Tang Q, Lu T, Liu SJ. Developing a Synthetic Biology Toolkit for Comamonas testosteroni, an Emerging Cellular Chassis for Bioremediation. ACS Synth Biol 2018; 7:1753-1762. [PMID: 29860823 DOI: 10.1021/acssynbio.7b00430] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthetic biology is rapidly evolving into a new phase that emphasizes real-world applications such as environmental remediation. Recently, Comamonas testosteroni has become a promising chassis for bioremediation due to its natural pollutant-degrading capacity; however, its application is hindered by the lack of fundamental gene expression tools. Here, we present a synthetic biology toolkit that enables rapid creation of functional gene circuits in C. testosteroni. We first built a shuttle system that allows efficient circuit construction in E. coli and necessary phenotypic testing in C. testosteroni. Then, we tested a set of wildtype inducible promoters, and further used a hybrid strategy to create engineered promoters to expand expression strength and dynamics. Additionally, we tested the T7 RNA Polymerase-PT7 promoter system and reduced its leaky expression through promoter mutation for gene expression. By coupling random library construction with FACS screening, we further developed a synthetic T7 promoter library to confer a wider range of expression strength and dynamic characteristics. This study provides a set of valuable tools to engineer gene circuits in C. testosteroni, facilitating the establishment of the organism as a useful microbial chassis for bioremediation purposes.
Collapse
Affiliation(s)
- Qiang Tang
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Environmental Microbiology Research Center, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Tang Q, Lu T, Liu SJ. Engineering the bacterium Comamonas testosteroni CNB-1: Plasmid curing and genetic manipulation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Zhang H, Li W, Luo H, Xiong G, Yu Y. Quantitative determination of testosterone levels with biolayer interferometry. Chem Biol Interact 2017; 276:141-148. [PMID: 28532684 DOI: 10.1016/j.cbi.2017.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
Natural and synthetic steroid hormones are widely spread in the environment and are considered as pollutants due to their endocrine activities, even at low concentrations, which are harmful to human health. To detect steroid hormones in the environment, a novel biosensor system was developed based on the principle of biolayer interferometry. Detection is based on changes in the interference pattern of white light reflected from the surface of an optical fiber with bound biomolecules. Monitoring interactions between molecules does not require radioactive, enzymatic, or fluorescent labels. Here, 2 double-stranded DNA fragments of operator 1 (OP1) and OP2 containing 10-bp palindromic sequences in chromosomal Comamonas testosteroni DNA (ATCC11996) were surface-immobilized to streptavidin sensors. Interference changes were detected when repressor protein RepA bound the DNA sequences. DNA-protein interactions were characterized and kinetic parameters were obtained. The dissociation constants between the OP1 and OP2 DNA sequences and RepA were 9.865 × 10-9 M and 2.750 × 10-8 M, respectively. The reactions showed high specifically and affinity. Because binding of the 10-bp palindromic sequence and RepA was affected by RepA-testosterone binding, the steroid could be quantitatively determined rapidly using the biosensor system. The mechanism of the binding assay was as follows. RepA could bind both OP1 and testosterone. RepA binding to testosterone changed the protein conformation, which influenced the binding between RepA and OP1. The percentage of the signal detected negative correlation with the testosterone concentration. A standard curve was obtained, and the correlation coefficient value was approximately 0.97. We could quantitatively determine testosterone levels between 2.13 and 136.63 ng/ml. Each sample could be quantitatively detected in 17 min. These results suggested that the specific interaction between double-stranded OP1 DNA and the RepA protein could be used to rapidly and quantitatively determine environmental testosterone levels by the biolayer interferometry technique.
Collapse
Affiliation(s)
- Hao Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, 130022 Changchun, Jilin Province, PR China
| | - Wei Li
- School of Life Science and Technology, Changchun University of Science and Technology, 130022 Changchun, Jilin Province, PR China
| | - Hong Luo
- Special Education College, Changchun University, 130022 Changchun, Jilin Province, PR China
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, Medical School, Schleswig-Holstein, 24103 Kiel, Germany
| | - Yuanhua Yu
- School of Life Science and Technology, Changchun University of Science and Technology, 130022 Changchun, Jilin Province, PR China.
| |
Collapse
|
6
|
Xiong G, Maser E. Construction of a biosensor mutant of Comamonas testosteroni for testosterone determination by cloning the EGFP gene downstream to the regulatory region of the 3,17β-HSD gene. Chem Biol Interact 2015; 234:188-96. [DOI: 10.1016/j.cbi.2014.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/20/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
|
7
|
Pan T, Huang P, Xiong G, Maser E. Isolation and identification of a repressor TetR for 3,17β-HSD expressional regulation in Comamonas testosteroni. Chem Biol Interact 2015; 234:205-12. [PMID: 25559855 DOI: 10.1016/j.cbi.2014.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/14/2014] [Accepted: 12/18/2014] [Indexed: 11/16/2022]
Abstract
Comamonas testosteroni (C. testosteroni) is able to catabolize a variety of steroids and polycyclic aromatic hydrocarbons. 3,17β-Hydroxysteroid dehydrogenase (3,17β-HSD) from C. testosteroni is a key enzyme in steroid degradation. Understanding the mechanism of 3,17β-HSD gene (βhsd) induction may help us to elucidate its complete molecular regulation. Sequencing the C. testosteroni ATCC11996 genome lead us to identify the tetR (522 bp) downstream of βhsd. Two repeat sequences (RS; 13 bp), that are separated to each other by 1661 bp, were found upstream of βhsd. A bioinformatic analysis revealed that TetR family proteins act as transcriptional repressors which are sensitive to environmental signals. Since, C. testosteroni responds to environmental steroid induction and upregulates steroid catabolic genes, we hypothesized that TetR might act in C. testosteroni as repressor for βhsd expression. The tetR was cloned into different plasmids, including an EGFP reporter system, for functional characterization and/or overexpression. The data indicate that, indeed, TetR acts as a repressor for 3,17β-HSD expression. Testosterone in turn, which is known to induce βhsd expression, could not resolve TetR repression. To further substantiate TetR as repressor for βhsd expression, a tetR gene knock-out mutant of C. testosteroni was generated. TetR gene knock-out mutants showed the same basal low level of βhsd expression as the C. testosteroni wild type cells. Interestingly, testosterone induction leads to a strong increase in βhsd expression, especially in the tetR gene knock-out mutants. The result with the knock-out mutant, in principle, supports our hypothesis that TetR is a repressor for βhsd expression, but the exact role of testosterone in this context remains unknown. Finally, it turned out that TetR is obviously also involved in the regulation of the hsdA gene.
Collapse
Affiliation(s)
- Tianyuan Pan
- Institute of Toxicology and Pharmacology for Natural Scientists, Medical School Schleswig-Holstein, Kiel, Germany; Department of Family Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310000 Hangzhou, China
| | - Pu Huang
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, Medical School Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
8
|
Sang Y, Xiong G, Maser E. Identification of a new steroid degrading bacterial strain H5 from the Baltic Sea and isolation of two estradiol inducible genes. J Steroid Biochem Mol Biol 2012; 129:22-30. [PMID: 21310233 DOI: 10.1016/j.jsbmb.2011.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/26/2011] [Accepted: 01/29/2011] [Indexed: 12/11/2022]
Abstract
The presence of steroid hormones in the aquatic environment is potentially threatening the population dynamics of all kinds of sea animals and public health. Environmental estrogens in water have been reported to be associated with abnormal sexual development and abnormal feminizing responses in some animals. New approaches for the bioremediation of steroid hormones from the environment are therefore urgently sought. We have previously isolated a steroid degrading bacterial strain (H5) from the Baltic Sea, at Kiel, Germany. In the present investigation, 16S rRNA analysis showed that marine strain H5 belongs to the genus Vibrio, family Vibrionaceae and class Gamma-Proteobacteria. To enable identification of steroid inducible genes from bacterial strain H5, a library was constructed of H5 chromosomal DNA fragments cloned into a fluorescent reporter (pKEGFP-2). A reporter plasmid pK3α-4.6-EGFP3 containing the estrogen-inducible gene 3α-hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) from Comamonas testosteroni (C. testosteroni) was created as a positive control. Steroid induction could be detected by a microplate fluorescence reader, when the plasmids were transformed into Escherichia coli (E. coli) HB101 cells. With our meta-genomic pKEGFP-2 approach, we identified two estradiol-inducible genes from marine strain H5, which are obviously involved in steroid degradation. Sequencing of the pKEGFP-2 inserts and data base research at NCBI revealed that one gene corresponds to 3-ketosteroid-delta-1-dehydrogenase from several Mycobacterium strains, while the other showed high similarity to carboxylesterase in Sebadella termitidis and Brachyspira murdochii. Both 3-ketosteroid-delta-1-dehydrogenase and carboxylesterase are one of the first enzymes in steroid degradation. In addition, we identified a strain H5 specific DNA sequence of 480bp which allows sensitive PCR detection and quantification of strain H5 bacteria in "unknown" seawater samples. Currently, the exact characterization and systematic classification of the marine steroid degrading bacterial strain H5 is envisaged, which might be used for the bioremediation of steroid contaminations in seawater. Article from a special issue on steroids and microorganisms.
Collapse
Affiliation(s)
- Yingying Sang
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | |
Collapse
|
9
|
Steroid degradation and two steroid-inducible enzymes in the marine bacterium H5. Chem Biol Interact 2011; 191:89-94. [PMID: 21281621 DOI: 10.1016/j.cbi.2011.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/23/2011] [Accepted: 01/24/2011] [Indexed: 11/20/2022]
Abstract
Natural and synthetic steroid hormones excreted into the environment are potentially threatening the population dynamics of all kinds of animals and public health. We have previously isolated a steroid degrading bacterial strain (H5) from the Baltic Sea, at Kiel, Germany. 16S-rRNA analysis showed that bacterial strain H5 belongs to the genus Vibrio, family Vibrionaceae and class Gamma-Proteobacteria. Bacterial strain H5 can degrade steroids such as testosterone and estrogens, which was shown in this study by determining the (3)H labeled steroid retaining in the bacterial H5 culture medium at incubation times of 5 h and 20 h. Since 3α-hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) is a key enzyme in adaptive steroid degradation in Comamonas testosteroni (C. testosteroni), in previous investigations, a meta-genomic system with the 3α-HSD/CR gene as a positive control was established. By this meta-genomic system, two estradiol inducible genes coding 3-ketosteroid-delta-1-dehydrogenase and carboxylesterase, respectively, which are involved in steroid degradation, were found in marine strain H5. In the present work, the 3-ketosteroid-delta-1-dehydrogenase and carboxylesterase genes were subcloned into plasmids pET38-12 and pET24-17, respectively. Overexpression in Escherichia coli (E. coli) strain BL21(DE3)pLysS cells resulted in corresponding proteins with an N-terminal His-tag sequence. After induction with isopropyl-β-D-thiogalactoside, 3-ketosteroid-delta-1-dehydrogenase and carboxylesterase were purified in one step using nickel-chelate chromatography. After protein determination, 3-ketosteroid-delta-1-dehydrogenase (0.48 mg/ml) and carboxylesterase (1.28 mg/ml) were used to prepare antibodies to determine steroid binding specificity in future research. In summary, we have shown that the marine strain H5 could metabolize steroids; have isolated two estradiol inducible genes from strain H5 chromosomal DNA, and purified the corresponding proteins for further research. The exact characterization and systematic classification of the marine steroid degrading bacterial strain H5 is envisaged. The strain might be used for the bioremediation of steroid contaminations in seawater.
Collapse
|