1
|
Smaga CR, Bock SL, Johnson JM, Parrott BB. Sex Determination and Ovarian Development in Reptiles and Amphibians: From Genetic Pathways to Environmental Influences. Sex Dev 2022; 17:99-119. [PMID: 36380624 DOI: 10.1159/000526009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Reptiles and amphibians provide untapped potential for discovering how a diversity of genetic pathways and environmental conditions are incorporated into developmental processes that can lead to similar functional outcomes. These groups display a multitude of reproductive strategies, and whereas many attributes are conserved within groups and even across vertebrates, several aspects of sexual development show considerable variation. SUMMARY In this review, we focus our attention on the development of the reptilian and amphibian ovary. First, we review and describe the events leading to ovarian development, including sex determination and ovarian maturation, through a comparative lens. We then describe how these events are influenced by environmental factors, focusing on temperature and exposure to anthropogenic chemicals. Lastly, we identify critical knowledge gaps and future research directions that will be crucial to moving forward in our understanding of ovarian development and the influences of the environment in reptiles and amphibians. KEY MESSAGES Reptiles and amphibians provide excellent models for understanding the diversity of sex determination strategies and reproductive development. However, a greater understanding of the basic biology of these systems is necessary for deciphering the adaptive and potentially disruptive implications of embryo-by-environment interactions in a rapidly changing world.
Collapse
Affiliation(s)
- Christopher R Smaga
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Samantha L Bock
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Josiah M Johnson
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Benjamin B Parrott
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| |
Collapse
|
2
|
Hale MD, Koal T, Pham TH, Bowden JA, Parrott BB. Transcriptional networks underlying a primary ovarian insufficiency disorder in alligators naturally exposed to EDCs. Mol Cell Endocrinol 2022; 557:111751. [PMID: 35963581 DOI: 10.1016/j.mce.2022.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Interactions between the endocrine system and environmental contaminants are responsible for impairing reproductive development and function. Despite the taxonomic diversity of affected species and attendant complexity inherent to natural systems, the underlying signaling pathways and cellular consequences are mostly studied in lab models. To resolve the genetic and endocrine pathways that mediate affected ovarian function in organisms exposed to endocrine disrupting contaminants in their natural environments, we assessed broad-scale transcriptional and steroidogenic responses to exogenous gonadotropin stimulation in juvenile alligators (Alligator missippiensis) originating from a lake with well-documented pollution (Lake Apopka, FL) and a nearby reference site (Lake Woodruff, FL). We found that individuals from Lake Apopka are characterized by hyperandrogenism and display hyper-sensitive transcriptional responses to gonadotropin stimulation when compared to individuals from Lake Woodruff. Site-specific transcriptomic divergence appears to be driven by wholly distinct subsets of transcriptional regulators, indicating alterations to fundamental genetic pathways governing ovarian function. Consistent with broad-scale transcriptional differences, ovaries of Lake Apopka alligators displayed impediments to folliculogenesis, with larger germinal beds and decreased numbers of late-stage follicles. After resolving the ovarian transcriptome into clusters of co-expressed genes, most site-associated modules were correlated to ovarian follicule phenotypes across individuals. However, expression of two site-specific clusters were independent of ovarian cellular architecture and are hypothesized to represent alterations to cell-autonomous transcriptional programs. Collectively, our findings provide high resolution mapping of transcriptional patterns to specific reproductive function and advance our mechanistic understanding regarding impaired reproductive health in an established model of environmental endocrine disruption.
Collapse
Affiliation(s)
- Matthew D Hale
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA; Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA; Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | | | - John A Bowden
- Center for Environmental and Human Toxicology, Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Benjamin B Parrott
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA; Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| |
Collapse
|
3
|
Khan EA, Zhang X, Hanna EM, Yadetie F, Jonassen I, Goksøyr A, Arukwe A. Application of quantitative transcriptomics in evaluating the ex vivo effects of per- and polyfluoroalkyl substances on Atlantic cod (Gadus morhua) ovarian physiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142904. [PMID: 33138996 DOI: 10.1016/j.scitotenv.2020.142904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 05/22/2023]
Abstract
Because of their global consumption and persistence, per- and polyfluoroalkyl substances (PFASs), are ubiquitously distributed in the environment, as well as in wildlife and humans. In the present study, we have employed an ex vivo organ culture technique, based on the floating agarose method, of Atlantic cod ovarian tissue to investigate the effects of three different concentrations of PFOS, PFOA (1, 5 and 25 μM) and PFNA (0.5, 5 and 50 μM), used singly and in also in combination (1×, 20× and 100×). In the 1× exposure mixture, concentrations were decided based on their proportional levels (in molar equivalents) relative to PFOS, which is the most abundant PFAS in cod liver from a 2013 screening project. To investigate the detailed underlying mechanisms and biological processes, transcriptome sequencing was performed on exposed ovarian tissue. The number of differentially expressed genes (DEGs) having at least 0.75 log2-fold change was elevated in high, compared to low and medium concentration exposures. The highest PFNA, PFOA and PFOS concentrations, and the highest (100×) mixture exposure, showed 40, 68, 1295, and 802 DEGs, respectively. The latter two exposure groups shared a maximum of 438 DEGs. In addition, they both shared the majority of functionally enriched pathways belonging to biological processes such as cellular signaling, cell adhesion, lipid metabolism, immunological responses, cancer, reproduction and metabolism. Shortlisted DEGs that were specifically annotated to reproduction associated gene ontology (GO) terms were observed only in the highest PFOS and mixture exposure groups. These transcripts contributed to ovarian key events such as steroidogenesis (star, cyp19a1a), oocyte growth (amh), maturation (igfbp5b, tgfβ2, tgfβ3), and ovulation (pgr, mmp2). Contrary to other PFAS congeners, the highest PFOS concentration showed almost similar transcript expression patterns compared to the highest mixture exposure group. This indicates that PFOS is the active component of the mixture that significantly altered the normal functioning of female gonads, and possibly leading to serious reproductive consequences in teleosts.
Collapse
Affiliation(s)
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Eileen Marie Hanna
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Norway
| | | |
Collapse
|
4
|
Hale MD, McCoy JA, Doheny BM, Galligan TM, Guillette LJ, Parrott BB. Embryonic estrogen exposure recapitulates persistent ovarian transcriptional programs in a model of environmental endocrine disruption†. Biol Reprod 2018; 100:149-161. [DOI: 10.1093/biolre/ioy165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/12/2018] [Indexed: 11/15/2022] Open
Affiliation(s)
- Matthew D Hale
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | | | - Brenna M Doheny
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas M Galligan
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | - Louis J Guillette
- Marine Biomedicine and Environmental Sciences Program, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Endocrine Disruption and In Vitro Ecotoxicology: Recent Advances and Approaches. IN VITRO ENVIRONMENTAL TOXICOLOGY - CONCEPTS, APPLICATION AND ASSESSMENT 2017; 157:1-58. [DOI: 10.1007/10_2016_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Hamlin HJ, Edwards TM, McCoy J, Cruze L, Guillette LJ. Environmentally relevant concentrations of nitrate increase plasma testosterone concentrations in female American alligators (Alligator mississippiensis). Gen Comp Endocrinol 2016; 238:55-60. [PMID: 27118707 DOI: 10.1016/j.ygcen.2016.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/22/2016] [Indexed: 11/25/2022]
Abstract
Anthropogenic nitrogen is a ubiquitous environmental contaminant that is contributing to the degradation of freshwater, estuarine, and coastal ecosystems worldwide. The effects of environmental nitrate, a principal form of nitrogen, on the health of aquatic life is of increasing concern. We exposed female American alligators to three concentrations of nitrate (0.7, 10 and 100mg/L NO3-N) for a duration of five weeks and five months from hatch. We assessed growth, plasma sex steroid and thyroid hormone concentrations, and transcription levels of key genes involved in steroidogenesis (StAR, 3β-HSD, and P450scc) and hepatic clearance (Cyp1a, Cyp3a). Exposure to 100mg/L NO3-N for both five weeks and five months resulted in significantly increased plasma testosterone (T) concentrations compared with alligators in the reference treatment. No differences in 17β-estradiol, progesterone, or thyroid hormones were observed, nor were there differences in alligator weight or the mRNA abundance of steroidogenic or hepatic genes. Plasma and urinary nitrate concentrations increased with increasing nitrate treatment levels, although relative plasma concentrations of nitrate were significantly lower in five month, versus five week old animals, possibly due to improved kidney function in older animals. These results indicate that environmentally relevant concentrations of nitrate can increase circulating concentrations of T in young female alligators.
Collapse
Affiliation(s)
- Heather J Hamlin
- School of Marine Sciences, Aquaculture Research Institute, University of Maine, 5751 Murray Hall, Orono, ME 04469, USA; Department of Obstetrics and Gynecology, Medical University of South Carolina, and Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA; Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611, USA.
| | - Thea M Edwards
- Department of Biology, University of the South, 159 Spencer Hall, Sewanee, TN 37383, USA; Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611, USA
| | - Jessica McCoy
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Lori Cruze
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA; Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611, USA
| | - Louis J Guillette
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA; Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Martyniuk CJ, Doperalski NJ, Prucha MS, Zhang JL, Kroll KJ, Conrow R, Barber DS, Denslow ND. High contaminant loads in Lake Apopka's riparian wetland disrupt gene networks involved in reproduction and immune function in largemouth bass. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:140-150. [DOI: 10.1016/j.cbd.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/05/2016] [Accepted: 06/09/2016] [Indexed: 12/28/2022]
|
8
|
Kohno S, Bernhard MC, Katsu Y, Zhu J, Bryan TA, Doheny BM, Iguchi T, Guillette LJ. Estrogen receptor 1 (ESR1; ERα), not ESR2 (ERβ), modulates estrogen-induced sex reversal in the American alligator, a species with temperature-dependent sex determination. Endocrinology 2015; 156:1887-99. [PMID: 25714813 PMCID: PMC5393338 DOI: 10.1210/en.2014-1852] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
All crocodilians and many turtles exhibit temperature-dependent sex determination where the temperature of the incubated egg, during a thermo-sensitive period (TSP), determines the sex of the offspring. Estrogens play a critical role in sex determination in crocodilians and turtles, as it likely does in most nonmammalian vertebrates. Indeed, administration of estrogens during the TSP induces male to female sex reversal at a male-producing temperature (MPT). However, it is not clear how estrogens override the influence of temperature during sex determination in these species. Most vertebrates have 2 forms of nuclear estrogen receptor (ESR): ESR1 (ERα) and ESR2 (ERβ). However, there is no direct evidence concerning which ESR is involved in sex determination, because a specific agonist or antagonist for each ESR has not been tested in nonmammalian species. We identified specific pharmaceutical agonists for each ESR using an in vitro transactivation assay employing American alligator ESR1 and ESR2; these were 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) and 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol (WAY 200070), respectively. Alligator eggs were exposed to PPT or WAY 200070 at a MPT just before the TSP, and their sex was examined at the last stage of embryonic development. Estradiol-17β and PPT, but not WAY 200070, induced sex reversal at a MPT. PPT-exposed embryos exposed to the highest dose (5.0 μg/g egg weight) exhibited enlargement and advanced differentiation of the Müllerian duct. These results indicate that ESR1 is likely the principal ESR involved in sex reversal as well as embryonic Müllerian duct survival and growth in American alligators.
Collapse
Affiliation(s)
- Satomi Kohno
- Department of Obstetrics and Gynecology (S.K., J.Z., T.A.B., L.J.G.), Medical University of South Carolina, Charleston, South Carolina 29425; Marine Biomedicine and Environmental Science Center (S.K., M.C.B., T.A.B., B.M.D., L.J.G.), Hollings Marine Laboratory, Charleston, South Carolina 29412; Graduate Program in Marine Biology at the College of Charleston (M.C.B.), Charleston, South Carolina 29412; Graduate School of Life Science and Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo, 060-0808 Japan; Department of Biology (T.A.B.), University of Florida, Gainesville, Florida 32611; Okazaki Institute for Integrative Bioscience (T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, 444-8585 Japan; and Department of Basic Biology (T.I.), The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585 Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, Mayo KE, Woodruff TK. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev 2014; 35:747-94. [PMID: 25051334 PMCID: PMC4167436 DOI: 10.1210/er.2014-1003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis. Although the physiological role of inhibin as an activin antagonist in other organ systems is not as well defined as it is in the pituitary-gonadal axis, inhibin also modulates biological processes in other organs through paracrine, autocrine, and/or endocrine mechanisms. Inhibin and components of its signaling pathway are expressed in many organs. Diagnostically, inhibin is used for prenatal screening of Down syndrome as part of the quadruple test and as a biochemical marker in the assessment of ovarian reserve. In this review, we provide a comprehensive summary of our current understanding of the biological role of inhibin, its relationship with activin, its signaling mechanisms, and its potential value as a diagnostic marker for reproductive function and pregnancy-associated conditions.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Department of Obstetrics and Gynecology (Y.M., J.Z., C.H., W.P.S.W., T.K.W.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60610; Center for Molecular Innovation and Drug Discovery (R.M., C.H.), Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208; and Department of Molecular Biosciences (N.B.S., K.E.M., T.K.W.), Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Parrott BB, Bowden JA, Kohno S, Cloy-McCoy JA, Hale MD, Bangma JT, Rainwater TR, Wilkinson PM, Kucklick JR, Guillette LJ. Influence of tissue, age, and environmental quality on DNA methylation in Alligator mississippiensis. Reproduction 2014; 147:503-13. [DOI: 10.1530/rep-13-0498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic modifications are key mediators of the interactions between the environment and an organism's genome. DNA methylation represents the best-studied epigenetic modification to date and is known to play key roles in regulating transcriptional activity and promoting chromosome stability. Our laboratory has previously demonstrated the utility of the American alligator (Alligator mississippiensis) as a sentinel species to investigate the persistent effects of environmental contaminant exposure on reproductive health. Here, we incorporate a liquid chromatography–tandem mass spectrometry method to directly measure the total (global) proportion of 5-methyl-2′-deoxycytidine (5mdC) in ovarian and whole blood DNA from alligators. Global DNA methylation in ovaries was significantly elevated in comparison with that of whole blood. However, DNA methylation appeared similar in juvenile alligators reared under controlled laboratory conditions but originating from three sites with dissimilar environmental qualities, indicating an absence of detectable site-of-origin effects on persistent levels of global 5mdC content. Analyses of tissues across individuals revealed a surprising lack of correlation between global methylation levels in blood and ovary. In addition, global DNA methylation in blood samples from juvenile alligators was elevated compared with those from adults, suggesting that age, as observed in mammals, may negatively influence global DNA methylation levels in alligators. To our knowledge, this is the first study examining global levels of DNA methylation in the American alligator and provides a reference point for future studies examining the interplay of epigenetics and environmental factors in a long-lived sentinel species.
Collapse
|
11
|
Blumberg B, Iguchi T, Odermatt A. Endocrine disrupting chemicals. J Steroid Biochem Mol Biol 2011; 127:1-3. [PMID: 21839836 DOI: 10.1016/j.jsbmb.2011.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 01/09/2023]
|