1
|
Chienwichai P, Tipthara P, Tarning J, Limpanont Y, Chusongsang P, Chusongsang Y, Kiangkoo N, Adisakwattana P, Reamtong O. Identification of trans-genus biomarkers for early diagnosis of intestinal schistosomiasis and progression of gut pathology in a mouse model using metabolomics. PLoS Negl Trop Dis 2024; 18:e0011966. [PMID: 38381759 PMCID: PMC10880994 DOI: 10.1371/journal.pntd.0011966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Schistosomiasis is one of the most devastating human diseases worldwide. The disease is caused by six species of Schistosoma blood fluke; five of which cause intestinal granulomatous inflammation and bleeding. The current diagnostic method is inaccurate and delayed, hence, biomarker identification using metabolomics has been applied. However, previous studies only investigated infection caused by one Schistosoma spp., leaving a gap in the use of biomarkers for other species. No study focused on understanding the progression of intestinal disease. Therefore, we aimed to identify early gut biomarkers of infection with three Schistosoma spp. and progression of intestinal pathology. We infected 3 groups of mice, 3 mice each, with Schistosoma mansoni, Schistosoma japonicum or Schistosoma mekongi and collected their feces before and 1, 2, 4 and 8 weeks after infection. Metabolites in feces were extracted and identified using mass spectrometer-based metabolomics. Metabolites were annotated and analyzed with XCMS bioinformatics tool and Metaboanalyst platform. From >36,000 features in all conditions, multivariate analysis found a distinct pattern at each time point for all species. Pathway analysis reported alteration of several lipid metabolism pathways as infection progressed. Disturbance of the glycosaminoglycan degradation pathway was found with the presence of parasite eggs, indicating involvement of this pathway in disease progression. Biomarkers were discovered using a combination of variable importance for projection score cut-off and receiver operating characteristic curve analysis. Five molecules met our criteria and were present in all three species: 25-hydroxyvitamin D2, 1α-hydroxy-2β-(3-hydroxypropoxy) vitamin D3, Ganoderic acid Md, unidentified feature with m/z 455.3483, and unidentified feature with m/z 456.3516. These molecules were proposed as trans-genus biomarkers of early schistosomiasis. Our findings provide evidence for disease progression in intestinal schistosomiasis and potential biomarkers, which could be beneficial for early detection of this disease.
Collapse
Affiliation(s)
- Peerut Chienwichai
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nuttapohn Kiangkoo
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Kawahara T, Suzuki G, Mizuno S, Inazu T, Kasagi F, Kawahara C, Okada Y, Tanaka Y. Effect of active vitamin D treatment on development of type 2 diabetes: DPVD randomised controlled trial in Japanese population. BMJ 2022; 377:e066222. [PMID: 35613725 PMCID: PMC9131780 DOI: 10.1136/bmj-2021-066222] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess whether eldecalcitol, an active vitamin D analogue2, can reduce the development of type 2 diabetes among adults with impaired glucose tolerance. DESIGN Double blinded, multicentre, randomised, placebo controlled trial. SETTING Three hospitals in Japan, between June 2013 and August 2019. PARTICIPANTS People aged 30 years and older who had impaired glucose tolerance defined by using a 75 g oral glucose tolerance test and glycated haemoglobin level. INTERVENTIONS Participants were randomised to receive active vitamin D (eldecalcitol 0.75 μg per day; n=630) or matching placebo (n=626) for three years. MAIN OUTCOMES The primary endpoint was incidence of diabetes. Prespecified secondary endpoints were regression to normoglycaemia and incidence of type 2 diabetes after adjustment for confounding factors at baseline. In addition, bone densities and bone and glucose metabolism markers were assessed. RESULTS Of the 1256 participants, 571 (45.5%) were women and 742 (59.1%) had a family history of type 2 diabetes. The mean age of participants was 61.3 years. The mean serum 25-hydroxyvitamin D concentration at baseline was 20.9 ng/mL (52.2 nmol/L); 548 (43.6%) participants had concentrations below 20 ng/mL (50 nmol/L). During a median follow-up of 2.9 years, 79 (12.5%) of 630 participants in the eldecalcitol group and 89 (14.2%) of 626 in the placebo group developed type 2 diabetes (hazard ratio 0.87, 95% confidence interval 0.67 to 1.17; P=0.39). Regression to normoglycaemia was achieved in 145 (23.0%) of 630 participants in the eldecalcitol group and 126 (20.1%) of 626 in the placebo group (hazard ratio 1.15, 0.93 to 1.41; P=0.21). After adjustment for confounding factors by multivariable fractional polynomial Cox regression analysis, eldecalcitol significantly lowered the development of diabetes (hazard ratio 0.69, 0.51 to 0.95; P=0.020). In addition, eldecalcitol showed its beneficial effect among the participants with the lower level of basal insulin secretion (hazard ratio 0.41, 0.23 to 0.71; P=0.001). During follow-up, bone mineral densities of the lumbar spine and femoral neck and serum osteocalcin concentrations significantly increased with eldecalcitol compared with placebo (all P<0.001). No significant difference in serious adverse events was observed. CONCLUSIONS Although treatment with eldecalcitol did not significantly reduce the incidence of diabetes among people with pre-diabetes, the results suggested the potential for a beneficial effect of eldecalcitol on people with insufficient insulin secretion. TRIAL REGISTRATION UMIN Clinical Trials Registry UMIN000010758.
Collapse
Affiliation(s)
- Tetsuya Kawahara
- University of Occupational and Environmental Health, Kitakyushu, Japan
- Shin Komonji Hospital, Kitakyushu, Japan
| | - Gen Suzuki
- International University Health and Welfare Clinic, Ohtawara, Japan
| | | | | | | | - Chie Kawahara
- University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yosuke Okada
- University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiya Tanaka
- University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
3
|
Mori T, Horibe K, Koide M, Uehara S, Yamamoto Y, Kato S, Yasuda H, Takahashi N, Udagawa N, Nakamichi Y. The Vitamin D Receptor in Osteoblast-Lineage Cells Is Essential for the Proresorptive Activity of 1α,25(OH)2D3 In Vivo. Endocrinology 2020; 161:5912607. [PMID: 32987399 PMCID: PMC7575053 DOI: 10.1210/endocr/bqaa178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023]
Abstract
We previously reported that daily administration of a pharmacological dose of eldecalcitol, an analog of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], increased bone mass by suppressing bone resorption. These antiresorptive effects were found to be mediated by the vitamin D receptor (VDR) in osteoblast-lineage cells. Using osteoblast-lineage-specific VDR conditional knockout (Ob-VDR-cKO) mice, we examined whether proresorptive activity induced by the high-dose 1α,25(OH)2D3 was also mediated by VDR in osteoblast-lineage cells. Administration of 1α,25(OH)2D3 (5 μg/kg body weight/day) to wild-type mice for 4 days increased the number of osteoclasts in bone and serum concentrations of C-terminal crosslinked telopeptide of type I collagen (CTX-I, a bone resorption marker). The stimulation of bone resorption was concomitant with the increase in serum calcium (Ca) and fibroblast growth factor 23 (FGF23) levels, and decrease in body weight. This suggests that a toxic dose of 1α,25(OH)2D3 can induce bone resorption and hypercalcemia. In contrast, pretreatment of wild-type mice with neutralizing anti-receptor activator of NF-κB ligand (RANKL) antibody inhibited the 1α,25(OH)2D3-induced increase of osteoclast numbers in bone, and increase of CTX-I, Ca, and FGF23 levels in serum. The pretreatment with anti-RANKL antibody also inhibited the 1α,25(OH)2D3-induced decrease in body weight. Consistent with observations in mice conditioned with anti-RANKL antibody, the high-dose administration of 1α,25(OH)2D3 to Ob-VDR-cKO mice failed to significantly increase bone osteoclast numbers, serum CTX-I, Ca, or FGF23 levels, and failed to reduce the body weight. Taken together, this study demonstrated that the proresorptive, hypercalcemic, and toxic actions of high-dose 1α,25(OH)2D3 are mediated by VDR in osteoblast-lineage cells.
Collapse
Affiliation(s)
- Tomoki Mori
- Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Kanji Horibe
- Department of Oral Histology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shigeaki Kato
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Shiga, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Yuko Nakamichi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
- Correspondence: Yuko Nakamichi, PhD, Institute for Oral Science, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399–0781, Japan. E-mail:
| |
Collapse
|
4
|
|
5
|
Aihara S, Yamada S, Oka H, Kamimura T, Nakano T, Tsuruya K, Harada A. Hypercalcemia and acute kidney injury induced by eldecalcitol in patients with osteoporosis: a case series of 32 patients at a single facility. Ren Fail 2019; 41:88-97. [PMID: 30909788 PMCID: PMC6442105 DOI: 10.1080/0886022x.2019.1578667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/22/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Eldecalcitol (ELD) is an active vitamin D3 analog that is widely used in Japan for the treatment of osteoporosis. The most common adverse drug reaction of ELD is hypercalcemia. However, few reports have focused on acute kidney injury (AKI) associated with ELD-induced hypercalcemia. MATERIALS AND METHODS We retrospectively reviewed the medical records at our hospital for cases of hypercalcemia-induced AKI between April 2013 and February 2018. Among them, we focused on patients who developed AKI secondary to ELD-induced hypercalcemia. RESULTS Among 69 patients who developed hypercalcemia-induced AKI, 32 patients (46.4%) developed AKI associated with ELD-induced hypercalcemia. Their mean age was 82 ± 5 years, 97% of them were female, mean corrected serum calcium level was 12.2 ± 1.5 mg/dL, serum creatinine level was 2.5 ± 2.2 mg/dL, and estimated glomerular filtration rate was 23.9 ± 14.4 ml/min/1.73 m2 on admission. ELD administration was discontinued in all patients and some of them were treated with hydration with or without calcitonin, which was followed by a normalization of serum calcium level. Corrected serum calcium level on admission was significantly higher (p < .05) in patients treated with magnesium oxide. Although there were no significant differences, serum calcium and creatine levels on admission tended to be higher in patients who were treated with other drugs that affect renal hemodynamics and renal calcium metabolism than those not taking these drugs. CONCLUSIONS Prescribers of ELD should regularly monitor serum calcium levels and kidney function to prevent hypercalcemia and AKI associated with ELD and pay more attention to concomitant drugs especially magnesium oxide.
Collapse
Affiliation(s)
- Seishi Aihara
- Division of Kidney Center, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Oka
- Division of Kidney Center, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Taro Kamimura
- Division of Kidney Center, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Atsumi Harada
- Division of Kidney Center, Matsuyama Red Cross Hospital, Matsuyama, Japan
| |
Collapse
|
6
|
Sakai S, Hongo H, Yamamoto T, Hasegawa T, Takeda S, Saito H, Endo K, Yogo K, Amizuka N. Sequential Treatment with Eldecalcitol After PTH Improves Bone Mechanical Properties of Lumbar Spine and Femur in Aged Ovariectomized Rats. Calcif Tissue Int 2019; 104:251-261. [PMID: 30467731 DOI: 10.1007/s00223-018-0497-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/17/2018] [Indexed: 11/25/2022]
Abstract
Parathyroid hormone (PTH) analogs have a powerful anabolic effect on bone and are used in the treatment of patients with severe osteoporosis. However, there are limitations to how long they can be safely administered. Withdrawal of PTH results in the cancelation of its effects, necessitating subsequent treatment to maintain the bone quantity and quality. This study assessed the effects of Eldecalcitol (ELD), an active vitamin D3 derivative, after PTH in estrogen-deficient osteoporotic rats. Six-month-old female rats were ovariectomized, and PTH administration was started 7 weeks later. After 4 weeks of PTH treatment, the animals were divided into three groups and either continued to receive PTH (PTH-PTH), or were switched to ELD (PTH-ELD) or vehicle (PTH-Veh) for an additional 4 weeks. In the femur, increased BMD by 4 weeks treatment of PTH was significantly reduced in PTH-Veh but not in PTH-PTH and PTH-ELD. The same tendency was observed in the lumbar vertebrae. MicroCT imaging and histomorphometry analysis revealed that the favorable bone structure changes by PTH administration were also maintained in the femurs and tibias of the PTH-PTH and PTH-ELD groups. Increased bone strength by 4-week treatment of PTH in lumber also maintained in PTH-ELD. Furthermore, minimodeling was observed in the PTH-ELD group. These results demonstrate that treatment with ELD sequentially following PTH prevented the bone quantity and strength reduction that accompanies PTH withdrawal in estrogen-deficient rats.
Collapse
Affiliation(s)
- Sadaoki Sakai
- Product Research Department, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
- Medical Affairs Planning Department, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomomaya Yamamoto
- Department of Dentistry, Japan Self-Defense Force Hanshin Hospital, Kawanishi, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Takeda
- Product Research Department, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Hitoshi Saito
- Medical Affairs Planning Department, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Koichi Endo
- Medical Science Department, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Kenji Yogo
- Product Research Department, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Shintani T, Rosli SNZ, Takatsu F, Choon YF, Hayashido Y, Toratani S, Usui E, Okamoto T. Eldecalcitol (ED-71), an analog of 1α,25-dihydroxyvitamin D3 as a potential anti-cancer agent for oral squamous cell carcinomas. J Steroid Biochem Mol Biol 2016; 164:79-84. [PMID: 26444325 DOI: 10.1016/j.jsbmb.2015.09.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/26/2022]
Abstract
We have previously reported that 1,25(OH)2D3 inhibits NF-κB activity and thus inhibits growth of OSCC cells in serum-free culture and down-regulates HBp17/FGFBP-1 expression, which is important for cancer cell growth and angiogenesis. Here, we have investigated the effects of ED-71, an analog of vitamin D3 (VD) on OSCC cell lines in serum-free culture. It is known that ED-71 has a stronger inhibitory effect on bone resorption compared to VD and other VD analogs. To the best of our knowledge, there was no report examining the potential of ED-71 as an anti-cancer agent for OSCC. We found that ED-71 is able to inhibit the growth of cancer cell lines at a concentration of hundred times lower than calcitriol. As Cyp24A1 was reportedly induced in cancer cells, we measured the expression of CYP24A1 in OSCC cell lines (NA and UE), A431 epidermoid carcinoma and normal fibroblast cell (gfi) in serum-free culture. As a result, CYP24A1 mRNA and the protein expression in the OSCC cells treated with ED-71 increased in a dose-dependent manner. However, in vivo experiment, in which the A431 cells were implanted in mice, tumor formation was reduced by the ED-71 treatment with no significant difference between Cyp24A1 expression in the tumors of ED-71-treated and control group, as analyzed by western blotting and immunohistochemistry. These results suggest that ED-71 is a potential anti-cancer agent for OSCC.
Collapse
Affiliation(s)
- T Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Japan
| | - S N Z Rosli
- Department of Molecular Oral Medicine & Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Japan; Oral Cancer Research & Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - F Takatsu
- Department of Molecular Oral Medicine & Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Japan
| | - Y F Choon
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Y Hayashido
- Oral Maxillofacial Surgery, University Hospital, Japan
| | - S Toratani
- Department of Molecular Oral Medicine & Maxillofacial Surgery, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - E Usui
- Oral Maxillofacial Surgery, University Hospital, Japan
| | - T Okamoto
- Department of Molecular Oral Medicine & Maxillofacial Surgery, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan.
| |
Collapse
|
8
|
Yamasaki Y, Nagira K, Osaki M, Nagashima H, Hagino H. Effects of eldecalcitol on cortical bone response to mechanical loading in rats. BMC Musculoskelet Disord 2015; 16:158. [PMID: 26123128 PMCID: PMC4484892 DOI: 10.1186/s12891-015-0613-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background Mechanical loading of bones activates modeling and suppresses remodeling by promoting bone formation. Eldecalcitol is approved for the treatment of osteoporosis in Japan and is often used in patients undergoing exercise therapy. However, the effects of eldecalcitol on bone formation during mechanical loading are unknown. The aim of this study was to clarify the influence of eldecalcitol administration on bone response to mechanical loading using a four-point bending device. Methods Forty six-month-old female Wistar rats were randomized into four groups based on eldecalcitol dose (vehicle administration (VEH), low dose (ED-L), medium dose (ED-M), and high dose (ED-H)). Loads of 38 N were applied in vivo to the right tibia for 36 cycles at 2 Hz, by four-point bending, 3 days per week for 3 weeks. After calcein double-labeling, rats were sacrificed and tibial cross sections were prepared from the region with maximal bending at the central diaphysis. Histomorphometry was performed on the entire periosteal and endocortical surface of the tibiae, dividing the periosteum into lateral and medial surfaces. Results The effects of external loading on bone formation parameters were significant at all three surfaces. Bone formation parameters were highest in the ED-H group, and the effects of eldecalcitol on bone formation rate were significant at the endocortical surface. In addition, the interaction between loading and eldecalcitol dose significantly affected bone formation rate at the endocortical surface. Conclusions Eldecalcitol enhanced the cortical bone response to mechanical loading and a synergistic effect was observed in a rat model.
Collapse
Affiliation(s)
- Yusuke Yamasaki
- Graduate School of Medical Sciences, Tottori University, Yonago, Japan. .,YMCA College of Medical & Human Services in Yonago, Yonago, Japan.
| | - Keita Nagira
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Yonago, Japan.
| | - Mari Osaki
- Rehabilitation Division of Tottori University Hospital, Yonago, Japan.
| | - Hideki Nagashima
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Yonago, Japan.
| | - Hiroshi Hagino
- Rehabilitation Division of Tottori University Hospital, Yonago, Japan. .,School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan.
| |
Collapse
|
9
|
Yasuda K, Iwanaga Y, Ogawa K, Mano H, Ueno S, Kimoto S, Ohta M, Kamakura M, Ikushiro S, Sakaki T. Human hepatic metabolism of the anti-osteoporosis drug eldecalcitol involves sterol C4-methyl oxidase. Pharmacol Res Perspect 2015; 3:e00120. [PMID: 26038696 PMCID: PMC4448988 DOI: 10.1002/prp2.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 11/28/2014] [Accepted: 11/30/2014] [Indexed: 11/22/2022] Open
Abstract
The metabolism of eldecalcitol (ED-71), a 2β-hydroxypropoxylated analog of the active form of vitamin D3 was investigated by using in vitro systems. ED-71 was metabolized to 1α,2β,25-trihydroxyvitamin D3 (1α,2β,25(OH)3D3) in human small intestine and liver microsomes. To identify the enzymes involved in this metabolism, we examined NADPH-dependent metabolism by recombinant P450 isoforms belonging to the CYP1, 2, and 3 families, and revealed that CYP3A4 had the activity. However, the CYP3A4 -specific inhibitor, ketoconazole, decreased the activity in human liver microsomes by only 36%, suggesting that other enzymes could be involved in ED-71 metabolism. Because metabolism was dramatically inhibited by cyanide, we assumed that sterol C4-methyl oxidase like gene product (SC4MOL) might contribute to the metabolism of ED-71. It is noted that SC4MOL is physiologically essential for cholesterol synthesis. Recombinant human SC4MOL expressed in COS7, Saccharomyces cerevisiae, or Escherichia coli cells converted ED-71 to 1α,2β,25(OH)3D3. Furthermore, we evaluated the metabolism of ED-71 by recombinant CYP24A1, which plays an important role in the metabolism of the active form of vitamin D3 (1α,25(OH)2D3) and its analogs. The kcat/Km value for 24- or 23-hydroxylation of ED-71 was only 3% of that for 1α,25(OH)2D3, indicating that ED-71 was resistant to CYP24A1-dependent catabolism. Among the three enzymes catalyzing ED-71, SC4MOL appears to be most important in the metabolism of ED-71. To the best of our knowledge, this is the first study showing that SC4MOL can function as a drug-metabolizing enzyme. The yeast and E. coli expression systems for SC4MOL could be useful for structure-function analyses of SC4MOL.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yuasa Iwanaga
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kazuaki Ogawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Hiroki Mano
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Sera Ueno
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shutaro Kimoto
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Miho Ohta
- Development Nourishment Department, Soai University 4-4-1 Nankonaka, Suminoe, Osaka, 559-0033, Japan
| | - Masaki Kamakura
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
10
|
Takano M, Sawada D, Yasuda K, Nishikawa M, Takeuchi A, Takagi KI, Horie K, Reddy GS, Chen TC, Sakaki T, Kittaka A. Synthesis and metabolic studies of 1α,2α,25-, 1α,4α,25- and 1α,4β,25-trihydroxyvitamin D3. J Steroid Biochem Mol Biol 2015; 148:34-7. [PMID: 25263656 DOI: 10.1016/j.jsbmb.2014.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 11/24/2022]
Abstract
Three different A-ring perhydroxylated trihydroxyvitamin D3 metabolites were synthesized from their appropriate A-ring precursors and CD-ring for their potential therapeutic applications. We first chemically synthesized 1α,2α,25-trihydroxyvitamin D3 [1α,2α,25(OH)3D3] to study its VDR binding affinity because this metabolite is a product of recombinant human CYP3A4 catalysis when 2α-(3-hydroxypropoxy)-1α,25-dihydroxyvitamin D3 (O2C3), a more potent vitamin D receptor (VDR) binder than 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], is used as the substrate. We found that this metabolite retained 27.3% of the VDR binding affinity compared to 1α,25(OH)2D3. The kcat/Km value of CYP24A1 for 1α,2α,25(OH)3D3 is 60% of that for 1α,25(OH)2D3. Since the biological activity and the metabolic fate of a naturally occurring C4-hydroxylated vitamin D2 metabolite found in the serum of rats treated with pharmacological doses of vitamin D2 have never been described, we next synthesized 1α,4α,25-trihydroxyvitamin D3 and its diastereoisomer, 1α,4β,25-trihydroxyvitamin D3, to study their metabolism and biological activities. Both 4-hydroxylated isomers showed weaker VDR binding affinity than 1α,25(OH)2D3. Although either 4-hydroxylated isomer can be metabolized by CYP24A1 almost at the same level as 1α,25(OH)2D3, their metabolic patterns catalyzed by uridine 5'-diphosphoglucuronosyltransferase (UGT) are different; only the 4α-hydroxylated analog can be metabolized by UGT to produce a glucuronate conjugate. The results provide important information for the synthesis of new novel chemotherapeutic vitamin D analogs which would be less subjective to degradation and therefore more bioavailable than 1α,25(OH)2D3. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Daisuke Sawada
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Kaori Yasuda
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Miyu Nishikawa
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Akiko Takeuchi
- Teijin Institute for Bio-medical Research, Teijin Pharma Ltd., Hino, Tokyo 191-8512, Japan
| | - Ken-Ichiro Takagi
- Teijin Institute for Bio-medical Research, Teijin Pharma Ltd., Hino, Tokyo 191-8512, Japan
| | - Kyohei Horie
- Teijin Institute for Bio-medical Research, Teijin Pharma Ltd., Hino, Tokyo 191-8512, Japan
| | | | - Tai C Chen
- Section of Endocrinology, Diabetes & Nutrition, Boston University School of Medicine, Boston, MA 02118, USA
| | - Toshiyuki Sakaki
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
| |
Collapse
|
11
|
Kondo S, Takano T, Ono Y, Saito H, Matsumoto T. Eldecalcitol reduces osteoporotic fractures by unique mechanisms. J Steroid Biochem Mol Biol 2015; 148:232-8. [PMID: 25625663 DOI: 10.1016/j.jsbmb.2015.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/27/2014] [Accepted: 01/22/2015] [Indexed: 11/26/2022]
Abstract
Eldecalcitol shows higher binding affinity for vitamin D-binding protein (DBP), tighter binding to vitamin D receptor (VDR), and resistance to metabolic degradation via 24-hydroxylation. In silico analysis of the mode of binding demonstrated that the 3-hydroxypropyloxy (3-HP) group of eldecalcitol offers additional hydrogen bond and CH-π interaction for the binding to DBP and VDR. However, the 3-HP group interferes with the binding of eldecalcitol to CYP24A1, causing poor metabolic clearance of eldecalcitol by this enzyme. These characteristics may contribute to the stronger effect of eldecalcitol than calcitriol. The present post-hoc analysis also demonstrate that the incidence of hypercalcemia and hypercalciuria is slightly higher in eldecalcitol than in alfacalcidol group especially in patients with CKD stage 3B, that both serum and urinary calcium return to the baseline levels shortly after cessation of the treatment in both treatment groups, that the incidence of urolithiasis is higher in patients with higher eGFR and is similar between alfacalcidol and eldecalcitol groups, and that eGFR is transiently reduced by both alfacalcidol and eldecalcitol treatment especially among patients with higher eGFR but recovers after the end of both treatment. Eldecalcitol can be used for the treatment of osteoporosis without Ca supplementation to reduce the incidence of hypercalcemia and hypercalciuria, and enough hydration is recommended in order to avoid hypercalcemia, urolithiasis and deterioration of renal function.
Collapse
Affiliation(s)
- Satoshi Kondo
- Chugai Pharmaceutical Co., Ltd., Tokyo 103-8324, Japan
| | | | - Yoshiyuki Ono
- Chugai Pharmaceutical Co., Ltd., Tokyo 103-8324, Japan
| | - Hitoshi Saito
- Chugai Pharmaceutical Co., Ltd., Tokyo 103-8324, Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Research, University of Tokushima, Tokushima 770-8503, Japan.
| |
Collapse
|