1
|
Sohail A, Al Menhali A, Hisaindee S, Shah I. An LC-MS/MS Method for Analysis of Vitamin D Metabolites and C3 Epimers in Mice Serum: Oral Supplementation Compared to UV Irradiation. Molecules 2021; 26:5182. [PMID: 34500616 PMCID: PMC8434525 DOI: 10.3390/molecules26175182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The most common forms of vitamin D in human and mouse serum are vitamin D3 and vitamin D2 and their metabolites. The aim of this study is to determine whether diet and sunlight directly affect the circulating concentrations of vitamin D metabolites in a mouse model. We investigated the serum concentrations of eight vitamin D metabolites-vitamin D (vitamin D3 + vitamin D2), 25OHD (25OHD3 + 25OHD2), 1α25(OH)2D (1α25(OH)2D2, and 1α25(OH)2D3)-including their epimer, 3-epi-25OHD (3-epi-25OHD3 and 3-epi-25OHD2), and a bile acid precursor 7alpha-hydroxy-4-cholesten-3-one (7αC4), which is known to cause interference in liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. METHOD The LC-MS/MS method was validated according to FDA-US guidelines. The validated method was used for the analysis of mouse serum samples. Forty blood samples from mice were collected and divided into three groups. The first group, the DDD mice, were fed a vitamin D-deficient diet (25 IU VD3/kg of diet) and kept in the dark; the second group, the SDD mice, were maintained on a standard-vitamin D diet (1000 IU VD3) and kept in the dark; and the third group, SDL, were fed a standard-vitamin D diet (1000 IU VD3) but kept on a normal light/dark cycle. LC-MS/MS was used for the efficient separation and quantitation of all the analytes. RESULTS The validated method showed good linearity and specificity. The intraday and interday precision were both <16%, and the accuracy across the assay range was within 100 ± 15%. The recoveries ranged between 75 and 95%. The stability results showed that vitamin D metabolites are not very stable when exposed to continuous freeze-thaw cycles; the variations in concentrations of vitamin D metabolites ranged between 15 and 60%. The overlapping peaks of vitamin D, its epimers, and its isobar (7αC4) were resolved using chromatographic separation. There were significant differences in the concentrations of all metabolites of vitamin D between the DDD and SDL mice. Between the groups SDD (control) and SDL, a significant difference in the concentrations of 3-epi-25OHD was noted, where C3 epimer was about 30% higher in SDL group while no significant differences were noted in the concentrations of vitamin D, 25OHD, 1α25(OH)2D, and 7αC4 between SDD and SDL group. CONCLUSIONS A validated method, combined with a simple extraction technique, for the sensitive LC-MS/MS determination of vitamin D metabolites is described here. The method can eliminate the interferences in LC-MS/MS analysis caused by the overlapping epimer and isobar due to them having the same molecular weights as 25OHD. The validated method was applied to mouse serum samples. It was concluded that a standard-vitamin D diet causes an increase in the proportion of all the vitamin D metabolites and C3 epimers and isobar, while UV light has no pronounced effect on the concentrations of the majority of the vitamin D metabolites except 3-epi-25OHD. Further studies are required to confirm this observation in humans and to investigate the biochemical pathways related to vitamin D's metabolites and their epimers.
Collapse
Affiliation(s)
- Amir Sohail
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; (A.S.); (S.H.)
| | - Asma Al Menhali
- Department of Biology, College of Sciences, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates
| | - Soleiman Hisaindee
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; (A.S.); (S.H.)
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; (A.S.); (S.H.)
| |
Collapse
|
2
|
Ghaly S, Bliuc D, Center JR, Clarke MW, Jones AP, Trend S, Kermode AG, Neale RE, Hart PH. Vitamin D C3-epimer levels are proportionally higher with oral vitamin D supplementation compared to ultraviolet irradiation of skin in mice but not humans. J Steroid Biochem Mol Biol 2019; 186:110-116. [PMID: 30296587 DOI: 10.1016/j.jsbmb.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
Abstract
A proportion of circulating 25-hydroxy vitamin D3 (25(OH)D3)) undergoes epimerization to form C3-epi 25(OH)D3 and C3-epi 1,25(OH)2D3. These epimers have less calcaemic activity than non-epimerized metabolites and are not differentiated by many immunoassays when reporting total 25(OH)D3 levels. This study aimed to compare the effect of exposure to ultraviolet radiation (UVR) and oral vitamin D3 supplementation on vitamin D C3-epimer levels. C57Bl/6 female mice were fed either vitamin D-sufficient (vitamin D3 2000 IU/kg) or -deficient diets (no vitamin D3) for 4 weeks. Among the vitamin D-deficient group, the shaved backs of half were irradiated daily for 4 days with 1 kJ/m2 UVR, followed by twice weekly irradiation for 4 weeks. Despite similar 25(OH)D3 levels, the UV-irradiated group had a lower proportion of C3-epi 25(OH)D3 at week 7 (p < 0.05) and week 9 (p < 0.01). C3-epimer concentrations and %C3-epi 25(OH)D3 were also analysed in serum samples from two human clinical trials. These trials investigated the effect of high dose oral vitamin D3 supplementation and narrowband UVB phototherapy, respectively. Serum 25(OH)D3 and the %C3-epi 25(OH)D3 levels measured at 12 months after oral vitamin D3 supplementation were not significantly different to those measured at the time of maximal effect of phototherapy (2 months). Thus, the proportion of 25(OH)D3 that undergoes epimerization is greater with oral vitamin D3 supplementation than exposure to UVR in mice, but not in humans. This important difference between human and murine vitamin D metabolism warrants consideration when interpreting animal studies.
Collapse
Affiliation(s)
- Simon Ghaly
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia; School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia; Department of Gastroenterology and Hepatology, St. Vincent's Hospital, Sydney, NSW, Australia.
| | - Dana Bliuc
- Clinical Studies and Epidemiology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jacqueline R Center
- Clinical Studies and Epidemiology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Michael W Clarke
- Metabolomics Australia, Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Anderson P Jones
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Stephanie Trend
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia; Institute for Immunology and Infectious Disease, Murdoch University, Perth, Australia
| | - Rachel E Neale
- Cancer Aetiology and Prevention Group, QIMR Berghofer, Brisbane, QLD, Australia
| | - Prue H Hart
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
3
|
Wang Y, Buckendahl P, Sharma K, Miller JW, Shapses SA. Expression of vitamin D hydroxylases and bone quality in obese mice consuming saturated or monounsaturated enriched high-fat diets. Nutr Res 2018; 60:106-115. [DOI: 10.1016/j.nutres.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
|
4
|
Jamali N, Wang S, Darjatmoko SR, Sorenson CM, Sheibani N. Vitamin D receptor expression is essential during retinal vascular development and attenuation of neovascularization by 1, 25(OH)2D3. PLoS One 2017; 12:e0190131. [PMID: 29272316 PMCID: PMC5741250 DOI: 10.1371/journal.pone.0190131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022] Open
Abstract
Vitamin D provides a significant benefit to human health, and its deficiency has been linked to a variety of diseases including cancer. Vitamin D exhibits anticancer effects perhaps through inhibition of angiogenesis. We previously showed that the active form of vitamin D (1, 25(OH)2D3; calcitriol) is a potent inhibitor of angiogenesis in mouse model of oxygen-induced ischemic retinopathy (OIR). Many of vitamin D's actions are mediated through vitamin D receptor (VDR). However, the role VDR expression plays in vascular development and inhibition of neovascularization by 1, 25(OH)2D3 remains unknown. Here using wild type (Vdr +/+) and Vdr-deficient (Vdr -/-) mice, we determined the impact of Vdr expression on postnatal development of retinal vasculature and retinal neovascularization during OIR. We observed no significant effect on postnatal retinal vascular development in Vdr -/- mice up to postnatal day 21 (P21) compared with Vdr +/+ mice. However, we observed an increase in density of pericytes (PC) and a decrease in density of endothelial cells (EC) in P42 Vdr -/- mice compared with Vdr +/+ mice, resulting in a significant decrease in the EC/PC ratio. Although we observed no significant impact on vessel obliteration and retinal neovascularization in Vdr -/- mice compared with Vdr +/+ mice during OIR, the VDR expression was essential for inhibition of retinal neovascularization by 1, 25(OH)2D3. In addition, the adverse impact of 1, 25(OH)2D3 treatment on the mouse bodyweight was also dependent on VDR expression. Thus, VDR expression plays a significant role during retinal vascular development, especially during maturation of retinal vasculature by promoting PC quiescence and EC survival, and inhibition of ischemia-mediated retinal neovascularization by 1, 25(OH)2D3.
Collapse
Affiliation(s)
- Nasim Jamali
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Shoujian Wang
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Soesiawati R Darjatmoko
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States of America
| |
Collapse
|
5
|
Jamali N, Sorenson CM, Sheibani N. Vitamin D and regulation of vascular cell function. Am J Physiol Heart Circ Physiol 2017; 314:H753-H765. [PMID: 29351464 DOI: 10.1152/ajpheart.00319.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitamin D deficiency is linked to pathogenesis of many diseases including cardiovascular, cancer, and various eye diseases. In recent years, important roles for vitamin D in regulation of immune function, inflammation, angiogenesis, and aging have been demonstrated. Thus, vitamin D and its analogs have been evaluated for the treatment of various types of cancer and chronic diseases. We have previously shown that the active form of vitamin D [1,25(OH)2D3] is a potent inhibitor of angiogenesis. This activity is consistent with the important role proposed for vitamin D and its analogs in the mitigation of tumor growth through inhibition of angiogenesis. Here, we review the important nutritional value of vitamin D and the abnormalities linked to its deficiency. We will explore its potential role as a regulator of angiogenesis and vascular cell function and the role vitamin D receptor (VDR) expression plays in these activities during vascular development and neovascularization. Our studies have established an important role for 1,25(OH)2D3 and VDR in the regulation of perivascular supporting cell function. In addition, the interaction of 1,25(OH)2D3 and VDR is essential for these activities and inhibition of neovascularization. Delineating the signaling pathways involved and identification of genes that are the target of 1,25(OH)2D3 regulation in vascular cells will allow us to identify novel pathways that are targets for regulation of vascular function and angiogenesis.
Collapse
Affiliation(s)
- Nasim Jamali
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| |
Collapse
|
6
|
Du L, Zhao G, Duan Z, Li F. Behavioral improvements in a valproic acid rat model of autism following vitamin D supplementation. Psychiatry Res 2017; 253:28-32. [PMID: 28324861 DOI: 10.1016/j.psychres.2017.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 02/07/2023]
Abstract
The aim was to identify the effects of early vitamin D supplementation on autism-like behaviors (ASD) induced by valproic acid (VPA, an anti-convulsant and a mood stabilizer) in rats. 10 male Wistar rat pups with prenatal exposure to saline were in control group, and 20 Pups with prenatal exposure to VPA were divided into ASD-N (0.9% saline treated) and ASD-D group (vitamin D 80,000 IU/kg treated) on postnatal day 12. Self-grooming, olfactory habituation/dishabituation, and social interaction tests were conducted to assess social interaction, communication, and repetitive behaviors. Serum 25-hydroxyvitamin D (25(OH)D3) was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results showed that compared with the control group, the ASD-N group exhibited increased self-grooming, and decreased pinning and serum 25(OH)D3. Furthermore, the repetitive behavior of the ASD-N group exhibited a negative linear relationship with serum 25(OH)D3 on PND 42. In conclusion, early vitamin D supplementation in infant rat with ASD induced by VPA significantly improved development and behavior of rats related with ASD.
Collapse
Affiliation(s)
- Lin Du
- Department of Pathogenobiology, Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China; Jilin Key Laboratory of Biomedical Materials, Jilin University, Changchun, China
| | - Guolian Zhao
- Department of Pathogenobiology, Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China; Jilin Key Laboratory of Biomedical Materials, Jilin University, Changchun, China
| | - Zipeng Duan
- Department of Pathogenobiology, Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China; Jilin Key Laboratory of Biomedical Materials, Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China; Jilin Key Laboratory of Biomedical Materials, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Bolla NR, Corcoran A, Yasuda K, Chodyński M, Krajewski K, Cmoch P, Marcinkowska E, Brown G, Sakaki T, Kutner A. Synthesis and evaluation of geometric analogs of 1α,25-dihydroxyvitamin D 2 as potential therapeutics. J Steroid Biochem Mol Biol 2016; 164:50-55. [PMID: 26321387 DOI: 10.1016/j.jsbmb.2015.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023]
Abstract
An improved convergent strategy was developed for the synthesis of the previously obtained side-chain extended and rigidified analogs of 1α,25-dihydroxyvitamin D2, PRI-1906 and PRI-1907. New (24Z) geometric isomers of the analogs, PRI-1916 and PRI-1917, were also obtained and identified. These side-chain isomers were separable by flash chromatography, as C-25 alcohols, from the synthetic precursors of PRI-1906 and PRI-1907, respectively. The structures of new analogs were determined by advanced techniques of 1H and 13C NMR, including COSY, HSQC and HMBC sequences. Binding affinities of the geometric analogs PRI-1906 and PRI-1916 and their respective C-26, C-27 homologs PRI-1907 and PRI-1917 for the full-length human vitamin D receptor were determined by a fluorescence polarization competition assay. The binding affinity of (24Z) methyl analog PRI-1906 was much higher than that of (24E) analog PRI-1906, while the affinity of (24Z) ethyl analog PRI-1917 was lower than that of the respective PRI-1907. Investigation of the metabolism of these compounds by human CYP24A1 revealed they are much more resistant to CYP24A1 than 1α,25-dihydroxyvitamin D2, indicating they could have longer-term biological effects on target tissues.
Collapse
Affiliation(s)
| | - Aoife Corcoran
- Faculty of Biotechnology, University of Wroclaw, 14a Joliot-Curie, 50-383 Wroclaw, Poland
| | - Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Michał Chodyński
- Pharmaceutical Research Institute, 8 Rydygiera, 01-793 Warsaw, Poland
| | | | - Piotr Cmoch
- Pharmaceutical Research Institute, 8 Rydygiera, 01-793 Warsaw, Poland
| | - Ewa Marcinkowska
- Faculty of Biotechnology, University of Wroclaw, 14a Joliot-Curie, 50-383 Wroclaw, Poland
| | - Geoffrey Brown
- School of Immunity and Infection, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Andrzej Kutner
- Pharmaceutical Research Institute, 8 Rydygiera, 01-793 Warsaw, Poland
| |
Collapse
|