1
|
Li YM, Shen CY, Jiang JG. Sedative and hypnotic effects of the saponins from a traditional edible plant Liriope spicata Lour. in PCPA-induced insomnia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118049. [PMID: 38484954 DOI: 10.1016/j.jep.2024.118049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liriope spicata Lour., a species listed in the catalogue of 'Medicinal and Edible Homologous Species', is traditionally used for the treatment of fatigue, restlessness, insomnia and constipation. AIM OF THE STUDY This study is aimed to evaluate the sedative and hypnotic effect of the saponins from a natural plant L. spicata Lour. in vivo. MATERIALS AND METHODS The total saponin (LSTS) and purified saponin (LSPS) were extracted from L. spicata, followed by a thorough analysis of their major components using the HPLC-MS. Subsequently, the therapeutic efficacy of LSTS and LSPS was evaluated by the improvement of anxiety and depression behaviors of the PCPA-induced mice. RESULTS LSTS and LSPS exhibited similar saponin compositions but differ in their composition ratios, with liriopesides-type saponins accounting for a larger proportion in LSTS. Studies demonstrated that both LSTS and LSPS can extend sleep duration and immobility time, while reducing sleep latency in PCPA-induced mice. However, there was no significant difference in weight change among the various mice groups. Elisa results indicated that the LSTS and LSPS could decrease levels of NE, DA, IL-6, and elevate the levels of 5-HT, NO, PGD2 and TNF-α in mice plasma. LSTS enhanced the expression of neurotransmitter receptors, while LSPS exhibited a more pronounced effect in regulating the expression of inflammatory factors. In conclusion, the saponins derived from L. spicata might hold promise as ingredients for developing health foods with sedative and hypnotic effects, potentially related to the modulation of serotonergic and GABAAergic neuron expression, as well as immunomodulatory process.
Collapse
Affiliation(s)
- Yi-Meng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chun-Yan Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Southern Medical University, School of Traditional Chinese Medicine, Guangzhou, 510515, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Ruscogenin Ameliorated Sjögren's Syndrome by Inhibiting NLRP3 Inflammasome Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6425121. [PMID: 35800007 PMCID: PMC9256408 DOI: 10.1155/2022/6425121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/04/2022] [Indexed: 12/22/2022]
Abstract
This article investigated the role and the specific mechanism of Ruscogenin in Sjögren's syndrome (SS). NOD/ShiLtJ mice were treated with Ruscogenin, and acinar cells isolated from submandibular glands were treated with TNF-α, Ruscogenin and transfected with NLRP3 overexpression plasmid. Salivary flow rate (SFR) was measured at weeks 11, 13, 15, 17, and 20. Histological analysis of the submandibular glands was conducted by hematoxylin-eosin staining assay. IL-6, IL-17, TNF-α, and IL-1β mRNA expression was detected through qRT-PCR. AQP 5, AQP 4, P2X7R, NLRP3, caspase 1, IL-1β, Bax, and Bcl-2 protein levels were tested by western blot. Cell apoptosis was assessed through acridine orange and propidium iodide (AO/PI) staining assay and flow cytometry assay. Ruscogenin ameliorated the SFR and submandibular gland inflammation of NOD/ShiLtJ mice. Ruscogenin promoted the preservation of acinar cells and suppressed inflammation-related factors (P2X7R, NLRP3, caspase 1, and IL-1β) in submandibular gland tissues of NOD/ShiLtJ mice. Ruscogenin inhibited acinar cell apoptosis in NOD/ShiLtJ mice and reversed TNF-α-induced apoptosis and inflammation of acinar cells. NLRP3 overexpression reversed the repressive effect of Ruscogenin on TNF-α-induced inflammation and apoptosis of acinar cells. Ruscogenin ameliorated SS by inhibiting NLRP3 inflammasome activation.
Collapse
|
3
|
Dai Y, Zhou Q, Liu Y, Chen X, Li F, Yu B, Zhang Y, Kou J. Ruscogenin alleviates deep venous thrombosis and pulmonary embolism induced by inferior vena cava stenosis inhibiting MEK/ERK/Egr-1/TF signaling pathway in mice. Curr Pharm Des 2022; 28:2001-2009. [PMID: 35619253 DOI: 10.2174/1381612828666220526120515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ruscogenin (RUS) has anti-inflammatory and antithrombotic effects, while its potential effects on deep venous thrombosis (DVT) and pulmonary embolism (PE) remain unclear. OBJECTIVE We aimed to elucidate the effects of RUS on DVT and PE induced by the inferior vena cava stenosis (IVCS) model and investigate the underlying mechanism. METHODS Male C57/BL6 mice were used to explore whether IVCS model could be complicated with deep venous thrombosis and pulmonary embolism. Then, Effects of RUS on DVT and PE related inflammatory factors and coagulation were examined using H&E staining, ELISA, and real-time PCR. Western blot analysis was used to examine the effects of RUS on MEK/ERK/Egr-1/TF signaling pathway in PE. RESULTS IVCS model induced DVT and complied with PE 48 h after surgery. Administration of RUS (0.01, 0.1, 1 mg/kg) inhibited DVT, decreased biomarker D-Dimer, cardiac troponin I, N-Terminal probrain natriuretic peptide in plasma to ameliorate PE induced by IVCS model. Meanwhile, RUS reduced tissue factor and fibrinogen content of lung tissue, inhibited P-selectin and C-reactive protein activity in plasma, and suppressed the expressions of interleukin-6 and interleukin-1β in mice. Furthermore, RUS suppressed the phosphorylation of ERK1/2 and MEK1/2, decreasing the expressions of Egr-1 and TF in the lung. CONCLUSION IVCS model contributed to the development of DVT and PE in mice and was associated with increased inflammation. RUS showed therapeutic effects by inhibiting inflammation as well as suppressing the activation of MEK/ERK/Egr-1/TF signaling pathway.
Collapse
Affiliation(s)
- Yujie Dai
- Department of Pharmacology of Chinese Material Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Qianliu Zhou
- Department of Pharmacology of Chinese Material Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yuankai Liu
- Department of Pharmacology of Chinese Material Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Xiaojun Chen
- Department of Pharmacology of Chinese Material Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Fang Li
- Department of Pharmacology of Chinese Material Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Boyang Yu
- Department of Pharmacology of Chinese Material Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yuanyuan Zhang
- Department of Pharmacology of Chinese Material Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Junping Kou
- Department of Pharmacology of Chinese Material Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| |
Collapse
|
4
|
Wang YW, Wu YH, Zhang JZ, Tang JH, Fan RP, Li F, Yu BY, Kou JP, Zhang YY. Ruscogenin attenuates particulate matter-induced acute lung injury in mice via protecting pulmonary endothelial barrier and inhibiting TLR4 signaling pathway. Acta Pharmacol Sin 2021; 42:726-734. [PMID: 32855531 PMCID: PMC8114925 DOI: 10.1038/s41401-020-00502-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
The inhalation of particulate matter (PM) is closely related to respiratory damage, including acute lung injury (ALI), characterized by inflammatory fluid edema and disturbed alveolar-capillary permeability. Ruscogenin (RUS), the main active ingredient in the traditional Chinese medicine Ophiopogonis japonicus, has been found to exhibit anti-inflammatory activity and rescue LPS-induced ALI. In this study, we investigated whether and how RUS exerted therapeutic effects on PM-induced ALI. RUS (0.1, 0.3, 1 mg·kg-1·d-1) was orally administered to mice prior to or after intratracheal instillation of PM suspension (50 mg/kg). We showed that RUS administration either prior to or after PM challenge significantly attenuated PM-induced pathological injury, lung edema, vascular leakage and VE-cadherin expression in lung tissue. RUS administration significantly decreased the levels of cytokines IL-6 and IL-1β, as well as the levels of NO and MPO in both bronchoalveolar lavage fluid (BALF) and serum. RUS administration dose-dependently suppressed the phosphorylation of NF-κB p65 and the expression of TLR4 and MyD88 in lung tissue. Furthermore, TLR4 knockout partly diminished PM-induced lung injury, and abolished the protective effects of RUS in PM-instilled mice. In conclusion, RUS effectively alleviates PM-induced ALI probably by inhibition of vascular leakage and TLR4/MyD88 signaling. TLR4 might be crucial for PM to initiate pulmonary lesion and for RUS to exert efficacy against PM-induced lung injury.
Collapse
Affiliation(s)
- Yu-Wei Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yun-Hao Wu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Zhi Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Hui Tang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rui-Ping Fan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fang Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun-Ping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yuan-Yuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Özçınar Ö, Yusufoglu H, Kivçak B, Bedir E. Biotransformation of Neoruscogenin by the Endophytic Fungus Alternaria eureka. JOURNAL OF NATURAL PRODUCTS 2018; 81:1357-1367. [PMID: 29893560 DOI: 10.1021/acs.jnatprod.7b00898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biotransformation of neoruscogenin (NR, 1, spirosta-5,25(27)-diene-1β,3β-diol), the major bioactive sapogenin of Ruscus preparations, was carried out with the endophytic fungus Alternaria eureka. Fourteen new biotransformation products (2-15) were isolated, and their structures were elucidated by NMR and HRESIMS data analyses. A. eureka affected mainly oxygenation, oxidation, and epoxidation reactions on the B and C rings of the sapogenin to afford compounds 8-15. In addition to these, cleavage of the spiroketal system as in compounds 2-7 and subsequent transformations provided unusual metabolites. This is the first study reporting conversion of the spirostanol skeleton to cholestane-type metabolites 2-5. Additionally, the cleavage of the C-22/C-26 oxygen bridge yielding a furostanol-type steroidal framework and subsequent formation of the epoxy bridge between C-18 and C-22 in 7 was encountered for the first time in steroid chemistry.
Collapse
Affiliation(s)
- Özge Özçınar
- Department of Pharmacognosy, Faculty of Pharmacy , Ege University , 35100 Bornova - İzmir , Turkey
| | - Hasan Yusufoglu
- Department of Pharmacognosy, College of Pharmacy , Prince Sattam Bin Abdulaziz University , 11942 Al-Kharj , Saudi Arabia
| | - Bijen Kivçak
- Department of Pharmacognosy, Faculty of Pharmacy , Ege University , 35100 Bornova - İzmir , Turkey
| | - Erdal Bedir
- Department of Bioengineering, Faculty of Engineering , Izmir Institute of Technology , 35430 Urla - Izmir , Turkey
| |
Collapse
|
6
|
A Novel Fluoroimmunoassay for Detecting Ruscogenin with Monoclonal Antibodies Conjugated with CdSe/ZnS Quantum Dots. Molecules 2017; 22:molecules22081250. [PMID: 28933731 PMCID: PMC6152124 DOI: 10.3390/molecules22081250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 11/18/2022] Open
Abstract
Ruscogenin (RUS) is a steroidal sapogenin found in Ruscus aculeatus and Ophiopogon japonicus with several pharmacological activities. In the work reported herein, a novel method termed competitive fluorescence-linked immunosorbent assay (cFLISA) based on monoclonal antibodies (mAbs) coupled with quantum dots (QDs) was developed for the quick and sensitive determination of RUS in biological samples. The mAbs against RUS were conjugated with CdSe/ZnS QDs by the crossing-linking reagents and an indirect cFLISA method was developed. There was a good linear relationship between inhibition efficiency and logarithm concentration of RUS which was varied from 0.1 to 1000 ng/mL. The IC50 and limit of detection (LOD) were 9.59 ng/mL and 0.016 ng/mL respectively, which much lower than the enzyme-linked immunosorbent assay (ELISA) method. The recoveries in plasma and tissues were ranged from 82.3% to 107.0% and the intra- and inter-day precision values were below 15%. The developed cFLISA has been successfully applied to the measurement of the concentrations of RUS in biological samples of rats, and showed great potential for the tissue distribution study of RUS. The cFLISA method may provide a valuable tool for the analysis of small molecules in biological samples and such an approach could be applied to other natural products.
Collapse
|
7
|
Li F, Zhang Y, Zeng D, Xia Y, Fan X, Tan Y, Kou J, Yu B. The Combination of Three Components Derived from Sheng MaiSan Protects Myocardial Ischemic Diseases and Inhibits Oxidative Stress via Modulating MAPKs and JAK2-STAT3 Signaling Pathways Based on Bioinformatics Approach. Front Pharmacol 2017; 8:21. [PMID: 28197101 PMCID: PMC5282471 DOI: 10.3389/fphar.2017.00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/11/2017] [Indexed: 01/25/2023] Open
Abstract
GRS is a drug combination of three components including ginsenoside Rb1, ruscogenin and schisandrin. It derived from the well-known TCM formula Sheng MaiSan, a widely used traditional Chinese medicine for the treatment of cardiovascular diseases in clinic. The present study illuminates its underlying mechanisms against myocardial ischemic diseases based on the combined methods of bioinformatic prediction and experimental verification. A protein database was established through constructing the drug-protein network. And the target-pathway interaction network clustered the potential signaling pathways and targets of GRS in treatment of myocardial ischemic diseases. Several target proteins, such as NFKB1, STAT3 and MAPK14, were identified as the candidate key proteins, and MAPKs and JAK-STAT signaling pathway were suggested as the most related pathways, which were in accordance with the gene ontology analysis. Then, the predictive results were further validated and we found that GRS treatment alleviated hypoxia/reoxygenation (H/R)-induced cardiomyocytes injury via suppression of MDA levels and ROS generation, and potential mechanisms might related to the suppression of activation of MAPKs and JAK2-STAT3 signaling pathways. Conclusively, our results offer the evidence that GRS attenuates myocardial ischemia injury via regulating oxidative stress and MAPKs and JAK2-STAT3 signaling pathways, which supplied some new insights for its prevention and treatment of myocardial ischemia diseases.
Collapse
Affiliation(s)
- Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University Nanjing, China
| | - Yu Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University Nanjing, China
| | - Donglin Zeng
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University Nanjing, China
| | - Yu Xia
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University Nanjing, China
| | - Xiaoxue Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University Nanjing, China
| | - Yisha Tan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University Nanjing, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University Nanjing, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University Nanjing, China
| |
Collapse
|
8
|
Cao G, Jiang N, Hu Y, Zhang Y, Wang G, Yin M, Ma X, Zhou K, Qi J, Yu B, Kou J. Ruscogenin Attenuates Cerebral Ischemia-Induced Blood-Brain Barrier Dysfunction by Suppressing TXNIP/NLRP3 Inflammasome Activation and the MAPK Pathway. Int J Mol Sci 2016; 17:ijms17091418. [PMID: 27589720 PMCID: PMC5037697 DOI: 10.3390/ijms17091418] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022] Open
Abstract
Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, has been shown to inhibit cerebral ischemic injury. However, its potential molecular action on blood-brain barrier (BBB) dysfunction after stroke remains unclear. This study aimed to investigate the effects of ruscogenin on BBB dysfunction and the underlying mechanisms in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice and oxygen–glucose deprivation/reoxygenation (OGD/R)-injured mouse brain microvascular endothelial cells (bEnd.3). The results demonstrated that administration of ruscogenin (10 mg/kg) decreased the brain infarction and edema, improved neurological deficits, increased cerebral brain flow (CBF), ameliorated histopathological damage, reduced evans blue (EB) leakage and upregulated the expression of tight junctions (TJs) in MCAO/R-injured mice. Meanwhile, ruscogenin (0.1–10 µM) treatment increased cell viability and trans-endothelial electrical resistance (TEER) value, decreased sodium fluorescein leakage, and modulated the TJs expression in OGD/R-induced bEnd.3 cells. Moreover, ruscogenin also inhibited the expression of interleukin-1β (IL-1β) and caspase-1, and markedly suppressed the expression of Nucleotide-binding domain (NOD)-like receptor family, pyrin domain containing 3 (NLRP3) and thiredoxin-interactive protein (TXNIP) in vivo and in vitro. Furthermore, ruscogenin decreased reactive oxygen species (ROS) generation and inhibited the mitogen-activated protein kinase (MAPK) pathway in OGD/R-induced bEnd.3 cells. Our findings provide some new insights into its potential application for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Guosheng Cao
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Nan Jiang
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Yang Hu
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Guangyun Wang
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Mingzhu Yin
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaonan Ma
- Cellular and Molecular Biology Center, China Pharmaceutical University, Nanjing 211198, China.
| | - Kecheng Zhou
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Jin Qi
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Boyang Yu
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Junping Kou
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|