1
|
Yaghjyan L, Heng YJ, Baker GM, Murthy D, Mahoney MB, Rosner B, Tamimi RM. Associations of stem cell markers CD44, CD24 and ALDH1A1 with mammographic breast density in women with benign breast biopsies. Br J Cancer 2024; 131:325-333. [PMID: 38849477 PMCID: PMC11263693 DOI: 10.1038/s41416-024-02743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND We examined associations of CD44, CD24 and ALDH1A1 breast stem cell markers with mammographic breast density (MBD), a well-established breast cancer (BCa) risk factor. METHODS We included 218 cancer-free women with biopsy-confirmed benign breast disease within the Nurses' Health Study (NHS) and NHSII. The data on BCa risk factors were obtained from biennial questionnaires. Immunohistochemistry (IHC) was done on tissue microarrays. For each core, the IHC expression was assessed using a semi-automated platform and expressed as percent of positively stained cells for each marker out of the total cell count. MBD was assessed with computer-assisted techniques. Generalised linear regression was used to examine the associations of each marker with square root-transformed percent density (PD), absolute dense and non-dense areas (NDA), adjusted for BCa risk factors. RESULTS Stromal CD44 and ALDH1A1 expression was positively associated with PD (≥ 10% vs. <10% β = 0.56, 95% confidence interval [CI] [0.06; 1.07] and β = 0.81 [0.27; 1.34], respectively) and inversely associated with NDA (β per 10% increase = -0.17 [-0.34; -0.01] and β for ≥10% vs. <10% = -1.17 [-2.07; -0.28], respectively). Epithelial CD24 expression was inversely associated with PD (β per 10% increase = -0.14 [-0.28; -0.01]. Stromal and epithelial CD24 expression was positively associated with NDA (β per 10% increase = 0.35 [0.2 × 10-2; 0.70] and β per 10% increase = 0.34 [0.11; 0.57], respectively). CONCLUSION Expression of stem cell markers is associated with MBD.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- University of Florida, College of Public Health and Health Professions and College of Medicine, Department of Epidemiology, Gainesville, FL, USA.
| | - Yujing J Heng
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gabrielle M Baker
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Divya Murthy
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matt B Mahoney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Yaghjyan L, Heng YJ, Baker GM, Bret-Mounet VC, Murthy D, Mahoney MB, Rosner B, Tamimi RM. Associations of reproductive breast cancer risk factors with expression of stem cell markers in benign breast tissue. Front Oncol 2024; 14:1354094. [PMID: 38577336 PMCID: PMC10991780 DOI: 10.3389/fonc.2024.1354094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Background We investigated the associations of reproductive factors known to influence breast cancer risk with the expression of breast stem cell markers CD44, CD24, and ALDH1A1 in benign breast biopsy samples. Methods We included 439 cancer-free women with biopsy-confirmed benign breast disease within the Nurses' Health Study (NHS) and NHSII. The data on reproductive and other breast cancer risk factors were obtained from biennial questionnaires. Immunohistochemistry (IHC) was performed on tissue microarrays. For each core, the IHC expression was assessed using a semi-automated platform and expressed as % of cells that stained positive for a specific marker out of the total cell count. Generalized linear regression was used to examine the associations of reproductive factors with a log-transformed expression of each marker (in epithelium and stroma), adjusted for other breast cancer risk factors. Results In multivariate analysis, the time between menarche and age at first birth was inversely associated with CD44 in epithelium (β per 5 years = -0.38, 95% CI -0.69; -0.06). Age at first birth and the time between menarche and age at first birth were inversely associated with ALDH1A1 (stroma: β per 5 years = -0.43, 95% CI -0.76; -0.10 and β = -0.47, 95% CI -0.79; -0.15, respectively; epithelium: β = -0.15, 95% CI -0.30; -0.01 and β = -0.17, 95% CI -0.30; -0.03, respectively). Time since last pregnancy was inversely associated with stromal ALDH1A1 (β per 5 years = -0.55, 95% CI -0.98; -0.11). No associations were found for CD24. The observed associations were similar in premenopausal women. In postmenopausal women, lifetime duration of breastfeeding was inversely associated with stromal ALDH1A1 expression (β for ≥24 vs. 0 to <1 months = -2.24, 95% CI 3.96; -0.51, p-trend = 0.01). Conclusion Early-life reproductive factors may influence CD44 and ALDH1A1 expression in benign breast tissue.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gabrielle M Baker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Vanessa C Bret-Mounet
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Divya Murthy
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Matt B Mahoney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
3
|
Al-Shami K, Awadi S, Khamees A, Alsheikh AM, Al-Sharif S, Ala’ Bereshy R, Al-Eitan SF, Banikhaled SH, Al-Qudimat AR, Al-Zoubi RM, Al Zoubi MS. Estrogens and the risk of breast cancer: A narrative review of literature. Heliyon 2023; 9:e20224. [PMID: 37809638 PMCID: PMC10559995 DOI: 10.1016/j.heliyon.2023.e20224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
In female mammals, the development and regulation of the reproductive system and non-reproductive system are significantly influenced by estrogens (oestrogens). In addition, lipid metabolism is another physiological role of estrogens. Estrogens act through different types of receptors to introduce signals to the target cell by affecting many estrogen response elements. Breast cancer is considered mostly a hormone-dependent disease. Approximately 70% of breast cancers express progesterone receptors and/or estrogen receptors, and they are a good marker for cancer prognosis. This review will discuss estrogen metabolism and the interaction of estrogen metabolites with breast cancer. The carcinogenic role of estrogen is discussed in light of both conventional and atypical cancers susceptible to hormones, such as prostate, endometrial, and lung cancer, as we examine how estrogen contributes to the formation and activation of breast cancer. In addition, this review will discuss other factors that can be associated with estrogen-driven breast cancer.
Collapse
Affiliation(s)
- Khayry Al-Shami
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | - Sajeda Awadi
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | - Almu'atasim Khamees
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
- Department of General Surgery, King Hussein Cancer Center, Amman, 11941, Jordan
| | | | - Sumaiya Al-Sharif
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | | | - Sharaf F. Al-Eitan
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | | | - Ahmad R. Al-Qudimat
- Department of Public Health, College of Health Sciences, QU-Health, Qatar University, Doha, 2713, Qatar
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, 2713, Qatar
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan
| | | |
Collapse
|
4
|
Lin D, Liu Y, Tobias DK, Sturgeon K. Physical activity from menarche-to-first pregnancy and risk of breast cancer: the California teachers study. Cancer Causes Control 2022; 33:1343-1353. [PMID: 35987978 PMCID: PMC10440155 DOI: 10.1007/s10552-022-01617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE A longer menarche-to-first pregnancy window of susceptibility (WOS) is associated with increased breast cancer risk. Whether physical activity, an established preventive risk factor, during the menarche-to-first pregnancy WOS offsets breast cancer risk overall or for specific molecular subtypes is unclear. METHODS We examined the prospective association between physical activity during the menarche-to-first pregnancy WOS and breast cancer risk in the California Teachers Study (N = 78,940). Recreational physical activity at multiple timepoints were recalled at cohort entry, and converted to metabolic equivalent of task hours per week (MET-hrs/wk). We used multivariable Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS We observed 5,157 invasive breast cancer cases over 21.6 years of follow-up. Longer menarche-to-first pregnancy WOS (≥ 20 vs. < 15 years) was associated with higher breast cancer risk (HR = 1.23, 95% CI = 1.13-1.34). Women with higher physical activity level during menarche-to-first pregnancy had lower risk of invasive breast cancer (≥ 40 vs. < 9 MET-hrs/wk: HR = 0.89, 95% CI = 0.83-0.97) and triple-negative subtype (≥ 40 vs. < 9 MET-hrs/wk: HR = 0.53, 95% CI = 0.32-0.87). No association was observed for luminal A-like and luminal B-like subtypes. Higher physical activity level was associated with lower breast cancer risk among women with moderate (15-19 years) menarche-to-first pregnancy intervals (≥ 40 vs. < 9 MET-hrs/wk: HR = 0.80, 95% CI = 0.69-0.92), but not with short (< 15 years) or long (≥ 20 years) intervals. CONCLUSION Physical activity during a WOS was associated with lower breast cancer risk in our cohort. Understanding timing of physical activity throughout the life course in relationship with breast cancer risk maybe important for cancer prevention strategies.
Collapse
Affiliation(s)
- Dan Lin
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ying Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Deirdre K Tobias
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Kathleen Sturgeon
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
5
|
Wright EB, Lannigan DA. ERK1/2‐RSK regulation of oestrogen homeostasis. FEBS J 2022; 290:1943-1953. [PMID: 35176205 PMCID: PMC9381647 DOI: 10.1111/febs.16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
Abstract
The molecular mechanisms regulating oestrogen homeostasis have been primarily studied in the mammary gland, which is the focus of this review. In the non-pregnant adult, the mammary gland undergoes repeated cycles of proliferation and apoptosis in response to the fluctuating levels of oestrogen that occur during the reproductive stage. Oestrogen actions are mediated through the steroid hormone receptors, oestrogen receptor α and β and through a G-protein coupled receptor. In the mammary gland, ERα is of particular importance and thus will be highlighted. Mechanisms regulating oestrogen-induced responses through ERα are necessary to maintain homeostasis given that the signalling pathways that are activated in response to ERα-mediated transcription can also induce transformation. ERK1/2 and its downstream effector, p90 ribosomal S6 kinase (RSK), control homeostasis in the mammary gland by limiting oestrogen-mediated ERα responsiveness. ERK1/2 drives degradation coupled ERα-mediated transcription, whereas RSK2 acts as a negative regulator of ERK1/2 activity to limit oestrogen responsiveness. Moreover, RSK2 acts as a positive regulator of translation. Thus, RSK2 provides both positive and negative signals to maintain oestrogen responsiveness. In addition to transmitting signals through tyrosine kinase receptors, ERK1/2-RSK engages with hedgehog signalling to maintain oestrogen levels and with the HIPPO pathway to regulate ERα-mediated transcription. Additionally, ERK1/2-RSK controls the progenitor populations within the mammary gland to maintain the ERα-positive population. RSK2 is involved in increased breast cancer risk in individuals taking oral contraceptives and in parity-induced protection against breast cancer. RSK2 and ERα may also co-operate in diseases in tissues outside of the mammary gland.
Collapse
Affiliation(s)
- Eric B. Wright
- Biomedical Engineering Vanderbilt University Nashville TN USA
| | - Deborah A. Lannigan
- Biomedical Engineering Vanderbilt University Nashville TN USA
- Pathology, Microbiology & Immunology Vanderbilt University Medical Center Nashville TN USA
- Cell and Developmental Biology Vanderbilt University Nashville TN USA
| |
Collapse
|
6
|
Li C, Fan Z, Lin X, Cao M, Song F, Song F. Parity and risk of developing breast cancer according to tumor subtype: A systematic review and meta-analysis. Cancer Epidemiol 2021; 75:102050. [PMID: 34706325 DOI: 10.1016/j.canep.2021.102050] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Clinical breast cancer subtypes are categorized basing on the expression of hormone receptors and overexpression of the human epidermal growth factor receptor 2 (HER2). It is still unclear whether parity impact the risk of different breast cancer subtypes. METHODS We searched eight mainstream databases for published epidemiologic studies that assessed the relationship between parity and risk of breast cancer subtypes up to January 12, 2021. Parity number were unified into nulliparity and ever parity. The random-effects or fixed-effect models were used to calculate the pooled odds ratios (ORs) and 95% confidence intervals (CIs) among different subtypes. Restricted cubic spline analysis with four knots was applied to determine the relationship of parity number and risk of breast cancer subtypes. RESULTS We pooled sixteen case-control and four cohort studies, and performed an analysis including 7795 luminal A, 3576 luminal B, 1794 HER2-overexpressing, and 5192 triple-negative breast cancer cases among 1135131 participants. The combined ORs for ever parity versus nulliparity indicated a 34% reduction in luminal A risk (OR=0.66, 95% CI: 0.56-0.78), and a 29% reduction in luminal B risk (OR=0.71, 95% CI: 0.63-0.81), there was no significant association in HER2-overexpressing or TNBC risk. In the dose-response analysis, we observed a potentially non-linear and gradually increasing protective relationship between the number of parity and luminal breast cancer risk. CONCLUSIONS The effect of parity on breast cancer seems to vary among breast tumor subtypes, and it plays a protective role in luminal breast cancer.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Zeyu Fan
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Xiao Lin
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Mingli Cao
- Department of Chronic Diseases, Hexi District Center for Disease Control and Prevention, Tianjin 300211, People's Republic of China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China.
| |
Collapse
|
7
|
Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal JF, Deugnier MA, Lenfant F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 2021; 78:5681-5705. [PMID: 34156490 PMCID: PMC8316234 DOI: 10.1007/s00018-021-03860-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
Collapse
Affiliation(s)
- Mariam Rusidzé
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marine Adlanmérini
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Elodie Chantalat
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - I Raymond-Letron
- LabHPEC et Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Jean-François Arnal
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Françoise Lenfant
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France.
| |
Collapse
|
8
|
Chen H, Yaghjyan L, Li C, Peters U, Rosner B, Lindström S, Tamimi RM. Association of Interactions Between Mammographic Density Phenotypes and Established Risk Factors With Breast Cancer Risk, by Tumor Subtype and Menopausal Status. Am J Epidemiol 2021; 190:44-58. [PMID: 32639533 DOI: 10.1093/aje/kwaa131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Previous studies suggest that the association between mammographic density (MD) and breast cancer risk might be modified by other breast cancer risk factors. In this study, we assessed multiplicative interactions between MD measures and established risk factors on the risk of invasive breast cancer overall and according to menopausal and estrogen receptor status. We used data on 2,137 cases and 4,346 controls from a nested case-control study within the Nurses' Health Study (1976-2004) and Nurses' Health Study II (1989-2007), whose data on percent mammographic density (PMD) and absolute area of dense tissue and nondense tissue (NDA) were available. No interaction remained statistically significant after adjusting for number of comparisons. For breast cancer overall, we observed nominally significant interactions (P < 0.05) between nulliparity and PMD/NDA, age at menarche and area of dense tissue, and body mass index and NDA. Individual nominally significant interactions across MD measures and risk factors were also observed in analyses stratified by either menopausal or estrogen receptor status. Our findings help provide further insights into potential mechanisms underlying the association between MD and breast cancer.
Collapse
|
9
|
Parity reduces mammary repopulating activity but does not affect mammary stem cells defined as CD24 + CD29/CD49fhi in mice. Breast Cancer Res Treat 2020; 183:565-575. [PMID: 32696317 DOI: 10.1007/s10549-020-05804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/11/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Breast cancer (BCa) mortality is decreasing with early detection and improvement in therapies. The incidence of BCa, however, continues to increase, particularly estrogen-receptor-positive (ER +) subtypes. One of the greatest modifiers of ER + BCa risk is childbearing (parity), with BCa risk halved in young multiparous mothers. Despite convincing epidemiological data, the biology that underpins this protection remains unclear. Parity-induced protection has been postulated to be due to a decrease in mammary stem cells (MaSCs); however, reports to date have provided conflicting data. METHODS We have completed rigorous functional testing of repopulating activity in parous mice using unfractionated and MaSC (CD24midCD49fhi)-enriched populations. We also developed a novel serial transplant method to enable us to assess self-renewal of MaSC following pregnancy. Lastly, as each pregnancy confers additional BCa protection, we subjected mice to multiple rounds of pregnancy to assess whether additional pregnancies impact MaSC activity. RESULTS Here, we report that while repopulating activity in the mammary gland is reduced by parity in the unfractionated gland, it is not due to a loss in the classically defined MaSC (CD24+CD49fhi) numbers or function. Self-renewal was unaffected by parity and additional rounds of pregnancy also did not lead to a decrease in MaSC activity. CONCLUSIONS Our data show instead that parity impacts on the stem-like activity of cells outside the MaSC population.
Collapse
|
10
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
11
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
12
|
Reproductive Risk Factors Associated with Breast Cancer Molecular Subtypes among Young Women in Northern China. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5931529. [PMID: 32337260 PMCID: PMC7166267 DOI: 10.1155/2020/5931529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/20/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022]
Abstract
Purpose Accumulated evidence suggests that reproductive factors are related to different breast cancer subtypes, but most studies on these relationships are mainly focused on middle-aged and older patients, and it remains unclear how reproductive factors impact different subtypes of breast cancer in young women. Methods We assessed the relationships between fertility factors and luminal A, luminal B, human epidermal growth factor receptor 2 (HER2)-enriched, and triple-negative breast cancer (TNBC) subtypes in 3792 patients and 4182 controls aged 20–70 years. Data on the reproductive history of the study participants were acquired through face-to-face interviews and questionnaires. We conducted case-control comparisons among tumor subtypes based on estrogen receptor (ER), progesterone receptor (PR), and HER2 statuses using unconditional polychotomous multivariate logistic regression models to compute odds ratios (ORs) and 95% confidence intervals (CIs). Results Parity was inversely related to both luminal A and luminal B subtypes in young women and older women (all Ptrend < 0.05). Later age at first full-term birth was inversely related to the luminal A subtype (Ptrend < 0.05) in young women but correlated with an increased risk of the luminal A subtype (Ptrend < 0.05) in older women. Parous Chinese women 40 years old or younger who breastfed for 12 months or longer had a lower risk of luminal B and TNBC subtypes than women who never breastfed (OR = 0.55, 95% CI 0.36-0.84 and OR = 0.52, 95% CI 0.28-0.99, respectively). Conclusions Our results implied that parity exerted a strong protective effect against luminal A and luminal B subtype breast cancer in young Chinese women, and long-term breastfeeding obviously decreased the risk of luminal B and TNBC subtypes in this population.
Collapse
|
13
|
Pregnancy and Lactation: Risk or Protective Factors for Breast Cancer? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1252:195-197. [PMID: 32816282 DOI: 10.1007/978-3-030-41596-9_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pregnancy and lactation represent the most effective protective elements against breast cancer; counter-intuitively breast cancer incidence shows a small but noticeable increase up to 5 years after delivery. The cumulative effect is however favourable and women show a reduction in breast cancer risk which is proportional to the total duration of lactation and to the number of full-term pregnancies.
Collapse
|
14
|
Dodda BR, Bondi CD, Hasan M, Clafshenkel WP, Gallagher KM, Kotlarczyk MP, Sethi S, Buszko E, Latimer JJ, Cline JM, Witt-Enderby PA, Davis VL. Co-administering Melatonin With an Estradiol-Progesterone Menopausal Hormone Therapy Represses Mammary Cancer Development in a Mouse Model of HER2-Positive Breast Cancer. Front Oncol 2019; 9:525. [PMID: 31355130 PMCID: PMC6636553 DOI: 10.3389/fonc.2019.00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin has numerous anti-cancer properties reported to influence cancer initiation, promotion, and metastasis. With the need for effective hormone therapies (HT) to treat menopausal symptoms without increasing breast cancer risk, co-administration of nocturnal melatonin with a natural, low-dose HT was evaluated in mice that develop primary and metastatic mammary cancer. Individually, melatonin (MEL) and estradiol-progesterone therapy (EPT) did not significantly affect mammary cancer development through age 14 months, but, when combined, the melatonin-estradiol-progesterone therapy (MEPT) significantly repressed tumor formation. This repression was due to effects on tumor incidence, but not latency. These results demonstrate that melatonin and the HT cooperate to decrease the mammary cancer risk. Melatonin and EPT also cooperate to alter the balance of the progesterone receptor (PR) isoforms by significantly increasing PRA protein expression only in MEPT mammary glands. Melatonin significantly suppressed amphiregulin transcripts in MEL and MEPT mammary glands, suggesting that amphiregulin together with the higher PRA:PRB balance and other factors may contribute to reducing cancer development in MEPT mice. Melatonin supplementation influenced mammary morphology by increasing tertiary branching in the mouse mammary glands and differentiation in human mammary epithelial cell cultures. Uterine weight in the luteal phase was elevated after long-term exposure to EPT, but not to MEPT, indicating that melatonin supplementation may reduce estrogen-induced uterine stimulation. Melatonin supplementation significantly decreased the incidence of grossly-detected lung metastases in MEL mice, suggesting that melatonin delays the formation of metastatic lesions and/or decreases aggressiveness in this model of HER2+ breast cancer. Mammary tumor development was similar in EPT and MEPT mice until age 8.6 months, but after 8.6 months, only MEPT continued to suppress cancer development. These data suggest that melatonin supplementation has a negligible effect in young MEPT mice, but is required in older mice to inhibit tumor formation. Since melatonin binding was significantly decreased in older mammary glands, irrespective of treatment, melatonin supplementation may overcome reduced melatonin responsiveness in the aged MEPT mice. Since melatonin levels are known to decline near menopause, nocturnal melatonin supplementation may also be needed in aging women to cooperate with HT to decrease breast cancer risk.
Collapse
Affiliation(s)
- Balasunder R Dodda
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Corry D Bondi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mahmud Hasan
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - William P Clafshenkel
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Katie M Gallagher
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mary P Kotlarczyk
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Shalini Sethi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Ethan Buszko
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jean J Latimer
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Paula A Witt-Enderby
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vicki L Davis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Lope V, Toribio MJ, Pérez-Gómez B, Castelló A, Mena-Bravo A, Sierra MÁ, Lucas P, Herrán-Vidaurrázaga MDC, González-Vizcayno C, Pino MN, Cruz-Campos I, Roca-Navarro MJ, Aragonés N, Romieu I, Martínez-Cortés M, Luque de Castro MD, Pollán M. Serum 25-hydroxyvitamin D and mammographic density in premenopausal Spanish women. J Steroid Biochem Mol Biol 2019; 189:101-107. [PMID: 30836177 DOI: 10.1016/j.jsbmb.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
The role of vitamin D in mammographic density is still unclear. This study examines the association between serum 25-hydroxyvitamin D (25(OH)D) and mammographic density, overall and by specific women characteristics. DDM-Madrid is a cross-sectional study that recruited 1403 premenopausal women in a breast radiodiagnosis unit of Madrid City Council. Information was collected with a questionnaire and plasma 25(OH)D was measured by solid-phase extraction on-line coupled to liquid chromatography-tandem mass spectrometry. Percent mammographic density was assessed using a semi-automated computer tool (DM-Scan). Multivariable linear regression models were used to quantify the associations, categorizing 25(OH)D levels (nmol/L) into 3 groups according to the cut-offs established by the US Endocrine Society. Models were adjusted for age, education, body mass index, age at menarche, parity, previous breast biopsies, family history of breast cancer, physical activity, energy intake, use of corticoids, hypercholesterolemia and day of sample extraction. Mean serum 25(OH)D level was 49.4 + 18.9 nmol/L. Women with sufficient concentrations of 25(OH)D showed a slight decrease in mammographic density (β >75nmol/L=-3.40; p = 0.037). No differences were observed according to women characteristics except for parity, where the protective effect of 25(OH)D was only seen among nulliparous (β >75nmol/L=-13.00; p-heterogeneity = 0.006). In light of the protective effect of vitamin D on mammographic density and the high prevalence of vitamin D insufficiency in our population, improving these levels could be an effective measure for the prevention of health problems related to the lack of this essential vitamin.
Collapse
Affiliation(s)
- Virginia Lope
- National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain.
| | - María José Toribio
- Servicio de Medicina Preventiva y Gestión de Calidad, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Beatriz Pérez-Gómez
- National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | - Adela Castelló
- National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain; Faculty of Medicine, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Antonio Mena-Bravo
- Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - María Ángeles Sierra
- National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | - Pilar Lucas
- National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | | | | | - Marina Nieves Pino
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain
| | | | | | - Nuria Aragonés
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain; Epidemiology Section, Public Health Division, Department of Health of Madrid, Spain
| | - Isabelle Romieu
- Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Mexico; Hubert Department of Global Health, Emory University, Atlanta, GA, USA
| | - Mercedes Martínez-Cortés
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain
| | - María D Luque de Castro
- Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Marina Pollán
- National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| |
Collapse
|
16
|
Zur Hausen H, Bund T, de Villiers EM. Specific nutritional infections early in life as risk factors for human colon and breast cancers several decades later. Int J Cancer 2018; 144:1574-1583. [PMID: 30246328 DOI: 10.1002/ijc.31882] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Harald Zur Hausen
- Division Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Timo Bund
- Division Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Ethel-Michele de Villiers
- Division Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
17
|
Terry MB, Liao Y, Kast K, Antoniou AC, McDonald JA, Mooij TM, Engel C, Nogues C, Buecher B, Mari V, Moretta-Serra J, Gladieff L, Luporsi E, Barrowdale D, Frost D, Henderson A, Brewer C, Evans DG, Eccles D, Cook J, Ong KR, Izatt L, Ahmed M, Morrison PJ, Dommering CJ, Oosterwijk JC, Ausems MGEM, Kriege M, Buys SS, Andrulis IL, John EM, Daly M, Friedlander M, McLachlan SA, Osorio A, Caldes T, Jakubowska A, Simard J, Singer CF, Tan Y, Olah E, Navratilova M, Foretova L, Gerdes AM, Roos-Blom MJ, Arver B, Olsson H, Schmutzler RK, Hopper JL, van Leeuwen FE, Goldgar D, Milne RL, Easton DF, Rookus MA, Andrieu N. The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations. JNCI Cancer Spectr 2018; 2:pky078. [PMID: 30873510 PMCID: PMC6405439 DOI: 10.1093/jncics/pky078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/08/2018] [Accepted: 12/08/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Full-term pregnancy (FTP) is associated with a reduced breast cancer (BC) risk over time, but women are at increased BC risk in the immediate years following an FTP. No large prospective studies, however, have examined whether the number and timing of pregnancies are associated with BC risk for BRCA1 and BRCA2 mutation carriers. METHODS Using weighted and time-varying Cox proportional hazards models, we investigated whether reproductive events are associated with BC risk for mutation carriers using a retrospective cohort (5707 BRCA1 and 3525 BRCA2 mutation carriers) and a prospective cohort (2276 BRCA1 and 1610 BRCA2 mutation carriers), separately for each cohort and the combined prospective and retrospective cohort. RESULTS For BRCA1 mutation carriers, there was no overall association with parity compared with nulliparity (combined hazard ratio [HRc] = 0.99, 95% confidence interval [CI] = 0.83 to 1.18). Relative to being uniparous, an increased number of FTPs was associated with decreased BC risk (HRc = 0.79, 95% CI = 0.69 to 0.91; HRc = 0.70, 95% CI = 0.59 to 0.82; HRc = 0.50, 95% CI = 0.40 to 0.63, for 2, 3, and ≥4 FTPs, respectively, P trend < .0001) and increasing duration of breastfeeding was associated with decreased BC risk (combined cohort P trend = .0003). Relative to being nulliparous, uniparous BRCA1 mutation carriers were at increased BC risk in the prospective analysis (prospective hazard ration [HRp] = 1.69, 95% CI = 1.09 to 2.62). For BRCA2 mutation carriers, being parous was associated with a 30% increase in BC risk (HRc = 1.33, 95% CI = 1.05 to 1.69), and there was no apparent decrease in risk associated with multiparity except for having at least 4 FTPs vs. 1 FTP (HRc = 0.72, 95% CI = 0.54 to 0.98). CONCLUSIONS These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nadine Andrieu
- Correspondence to: Nadine Andrieu, PhD, Cancer Genetic Epidemiology Team, INSERM Unit 900, Institut Curie, 26 rue d’Ulm, 75005 Paris, France (e-mail: )
| | | |
Collapse
|
18
|
Anderson RL, Ingman WV, Britt KL. Editorial: How Reproductive History Influences Our Breast Cancer Risk. Front Oncol 2017; 7:289. [PMID: 29376022 PMCID: PMC5770630 DOI: 10.3389/fonc.2017.00289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robin L Anderson
- Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, LaTrobe University, Bundoora, VIC, Australia
| | - Wendy V Ingman
- School of Medicine at The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Kara L Britt
- Breast Cancer Risk and Prevention, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Subramani R, Lakshmanaswamy R. Pregnancy and Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:81-111. [PMID: 29096898 DOI: 10.1016/bs.pmbts.2017.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Breast cancer is the most commonly diagnosed type of cancer among women worldwide. The majority of breast cancers are sporadic and the etiology is not well understood. Several factors have been attributed to altering the risk of breast cancer. A full-term pregnancy is a crucial factor in altering the risk. Early full-term pregnancy has been shown to reduce the lifetime risk of breast cancer, while a later first full-term pregnancy increases breast cancer risk. Epidemiological and experimental data demonstrate that spontaneous or induced abortions do not significantly alter the risk of breast cancer. In this study, we briefly discuss the different types and stages of breast cancer, various risk factors, and potential mechanisms involved in early full-term pregnancy-induced protection against breast cancer. Understanding how early full-term pregnancy induces protection against breast cancer will help design innovative preventive and therapeutic strategies. This understanding can also help in the development of molecular biomarkers that can be of tremendous help in predicting the risk of breast cancer in the general population.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Paul L. Foster School of Medicine, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States.
| |
Collapse
|
20
|
Yaghjyan L, Stoll E, Ghosh K, Scott CG, Jensen MR, Brandt KR, Visscher D, Vachon CM. Tissue-based associations of mammographic breast density with breast stem cell markers. Breast Cancer Res 2017; 19:100. [PMID: 28851411 PMCID: PMC5576318 DOI: 10.1186/s13058-017-0889-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Mammographic breast density is a well-established, strong breast cancer risk factor but the biology underlying this association remains unclear. Breast density may reflect underlying alterations in the size and activity of the breast stem cell pool. We examined, for the first time, associations of CD44, CD24, and aldehyde dehydrogenase family 1 member A1 (ALDH1A1) breast stem cell markers with breast density. Methods We included in this study 64 asymptomatic healthy women who previously volunteered for a unique biopsy study of normal breast tissue at the Mayo Clinic (2006-2008). Mammographically identified dense and non-dense areas were confirmed/localized by ultrasound and biopsied. Immunohistochemical analysis of the markers was performed according to a standard protocol and the staining was assessed by a single blinded pathologist. In core biopsy samples retrieved from areas of high vs. low density within the same woman, we compared staining extent and an expression score (the product of staining intensity and extent), using the signed rank test. All tests of statistical significance were two-sided. Results A total of 64, 28, and 10 women were available for CD44, CD24, and ALDH1A1 staining, respectively. For all three markers, we found higher levels of staining extent in dense as compared to non-dense tissue, though for CD24 and ALDH1A1 the difference did not reach statistical significance (CD44, 6.3% vs. 2.0%, p < 0.001; CD24, 8.0% vs. 5.6%, p = 0.10; and ALDH1A1, 0.5% vs. 0.3%, p = 0.12). The expression score for CD44 was significantly greater in dense as compared to non-dense tissue (9.8 vs.3.0, p < 0.001). Conclusions Our findings suggest an increased presence and/or activity of stem cells in dense as compared to non-dense breast tissue. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0889-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA.
| | - Ethan Stoll
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL, 32610, USA
| | - Karthik Ghosh
- Division of General Internal Medicine, Mayo Clinic College of Medicine, 200 First St SW, Rochester, MN, 55902, USA
| | - Christopher G Scott
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| | - Matthew R Jensen
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| | - Kathleen R Brandt
- Department of Radiology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| | - Daniel Visscher
- Department of Anatomic Pathology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| | - Celine M Vachon
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
21
|
Dall GV, Britt KL. Estrogen Effects on the Mammary Gland in Early and Late Life and Breast Cancer Risk. Front Oncol 2017; 7:110. [PMID: 28603694 PMCID: PMC5445118 DOI: 10.3389/fonc.2017.00110] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
A woman has an increased risk of breast cancer if her lifelong estrogen exposure is increased due to an early menarche, a late menopause, and/or an absence of childbearing. For decades, it was presumed that the number of years of exposure drove the increased risk, however, recent epidemiological data have shown that early life exposure (young menarche) has a more significant effect on cancer risk than late menopause. Thus, rather than the overall exposure it seems that the timing of hormone exposure plays a major role in defining breast cancer risk. In support of this, it is also known that aberrant hormonal exposure prior to puberty can also increase breast cancer risk, yet the elevated estrogen levels during pregnancy decrease breast cancer risk. This suggests that the effects of estrogen on the mammary gland/breast are age-dependent. In this review article, we will discuss the existing epidemiological data linking hormone exposure and estrogen receptor-positive breast cancer risk including menarche, menopause, parity, and aberrant environmental hormone exposure. We will discuss the predominantly rodent generated experimental data that confirm the association with hormone exposure and breast cancer risk, confirming its use as a model system. We will review the work that has been done attempting to define the direct effects of estrogen on the breast, which are beginning to reveal the mechanism of increased cancer risk. We will then conclude with our views on the most pertinent questions to be addressed experimentally in order to explore the relationship between age, estrogen exposure, and breast cancer risk.
Collapse
Affiliation(s)
| | - Kara Louise Britt
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|