1
|
Van-Duyne G, Blair IA, Sprenger C, Moiseenkova-Bell V, Plymate S, Penning TM. The androgen receptor. VITAMINS AND HORMONES 2023; 123:439-481. [PMID: 37717994 DOI: 10.1016/bs.vh.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The Androgen Receptor (AR) is a ligand (androgen) activated transcription factor and a member of the nuclear receptor (NR) superfamily. It is required for male sex hormone function. AR-FL (full-length) has the domain structure of NRs, an N-terminal domain (NTD) required for transactivation, a DNA-binding domain (DBD), a nuclear localization signal (NLS) and a ligand-binding domain (LBD). Paradoxes exist in that endogenous ligands testosterone (T) and 5α-dihydrotestosterone (DHT) have differential effects on male sexual development while binding to the same receptor and transcriptional specificity is achieved even though the androgen response elements (AREs) are identical to those seen for the progesterone, glucocorticoid and mineralocorticoid receptors. A high resolution 3-dimensional structure of AR-FL by either cryo-EM or X-ray crystallography has remained elusive largely due to the intrinsic disorder of the NTD. AR function is regulated by post-translational modification leading to a large number of proteoforms. The interaction of these proteoforms in multiprotein complexes with co-activators and co-repressors driven by interdomain coupling mediates the AR transcriptional output. The AR is a drug target for selective androgen receptor modulators (SARMS) that either have anabolic or androgenic effects. Protstate cancer is treated with androgen deprivation therapy or by the use of AR antagonists that bind to the LBD. Drug resistance occurs due to adaptive AR upregulation and the appearance of splice variants that lack the LBD and become constitutively active. Bipolar T treatment and NTD-antagonists could surmount these resistance mechanisms, respectively. These recent advances in AR signaling are described.
Collapse
Affiliation(s)
- Greg Van-Duyne
- Department of Biophysics & Biochemistry, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Ian A Blair
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Cynthia Sprenger
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen Plymate
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Trevor M Penning
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
2
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
3
|
Liu M, Shi H, Yan J, Zhang Y, Ma Y, Le K, Li Z, Xing N, Li G. Gene polymorphism-related differences in the outcomes of abiraterone for prostate cancer: a systematic overview. Am J Cancer Res 2021; 11:1873-1894. [PMID: 34094659 PMCID: PMC8167691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023] Open
Abstract
Numerous prostate cancer (PC) associated genes have been reported in previous genome-wide association studies. Elucidation of prostate cancer pharmacogenomics have enhanced studies into the impact of germline genetic changes on treatment, in addition to evaluating related genomic alterations and biomarkers in prostate tumor tissues. Currently, Abiraterone (Abi) is used as one of the therapeutic options for PC. In this article, germline variants that have been associated with responses to Abi in patients with advanced PC are summarized. These include biomarker genes such as CYP17A1, AR-V7, HSD3B1, SLCO2B1, SULT1E1, and SRD5A2 that are involved in homologous recombination, as well as in gene expression mutations in important signaling pathways, such as WNT and Abi metabolic pathways.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Hongzhe Shi
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Yinglin Ma
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Kaidi Le
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Zhongdong Li
- Department of Pharmacy, Electric Power Teaching Hospital, Capital Medical UniversityBeijing 100073, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Guohui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| |
Collapse
|
4
|
Annalora AJ, Marcus CB, Iversen PL. Alternative Splicing in the Nuclear Receptor Superfamily Expands Gene Function to Refine Endo-Xenobiotic Metabolism. Drug Metab Dispos 2020; 48:272-287. [DOI: 10.1124/dmd.119.089102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022] Open
|
5
|
Clark E, Morton M, Sharma S, Fisher H, Howel D, Walker J, Wood R, Hancock H, Maier R, Marshall J, Bahl A, Crabb S, Jain S, Pedley I, Jones R, Staffurth J, Heer R. Prostate cancer androgen receptor splice variant 7 biomarker study - a multicentre randomised feasibility trial of biomarker-guided personalised treatment in patients with advanced prostate cancer (the VARIANT trial) study protocol. BMJ Open 2019; 9:e034708. [PMID: 31857319 PMCID: PMC6937062 DOI: 10.1136/bmjopen-2019-034708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Prostate cancer is the most common male cancer with one in four developing non-curable metastatic disease. Initial treatment responses to hormonal therapies are transient and further management options lie between (1) further hormone therapy or (2) a non-hormonal approach involving additional chemotherapy or molecular radiotherapy (radium-223). There is no clear rationale for choosing between these mechanistically different treatment approaches. The biology of hormone resistance is driven through abnormal androgen receptor activity and we can assay this through a blood test measuring androgen receptor variant 7 (AR-V7) expression in circulating tumour cells. Despite increasing evidence supporting AR-V7's role as a prognostic marker, the clinical utility of such measures remains unknown in helping personalise treatment decisions. METHODS AND DESIGN The VARIANT feasibility trial is a pragmatic design, to be run over 18 months with participants randomised into the intervention arm receiving biomarker (AR-V7) guided clinical treatment and participants randomised into the control arm with conventional standard management (no biomarker guidance). AR-V7 positive participants (likely to be insensitive to further hormone treatment) will receive chemotherapy or in other cases radium-223 (where routinely available). Seventy male ≥18 years old participants with metastatic castrate resistant prostate cancer clinically indicated to proceed to further hormone therapy or chemotherapy, will be recruited from three National Health Service Trusts based in England, Scotland and Wales. The feasibility primary outcome is willingness of patients to be randomised and clinicians to recruit to a biomarker-based treatment strategy, with trial data informing the basis of a definitive and appropriately powered randomised control trial. ETHICS AND DISSEMINATION Formal ethics review was undertaken with a favourable opinion, through Wales NRES Committee 2 18/WA/0419. Findings to be disseminated through patient and professional organisations that have expressed their support, media outlets and peer-reviewed journal publication. TRIAL REGISTRATION NUMBER ISRCTN10246848; pre-results.
Collapse
Affiliation(s)
- Emma Clark
- Translational and Clinical Research Institute, NU Cancer, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Miranda Morton
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Shriya Sharma
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Holly Fisher
- Population Health Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Denise Howel
- Population Health Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Jenn Walker
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Ruth Wood
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Helen Hancock
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Rebecca Maier
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - John Marshall
- Trial Managment Group, VARIANT Trial, Newcastle-Upon-Tyne, UK
| | - Amit Bahl
- University Hospitals Bristol NHS Foundation Trust, Bristol, Bristol, UK
| | | | - Suneil Jain
- Queen's University Belfast, Belfast, Belfast, UK
| | - Ian Pedley
- Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, Newcastle upon Tyne, UK
| | - Rob Jones
- University of Glasgow, Glasgow, Glasgow, UK
| | - John Staffurth
- Research, Velindre Cancer Centre, Cardiff, Cardiff, UK
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, Cardiff, UK
| | - Rakesh Heer
- Translational and Clinical Research Institute, NU Cancer, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
6
|
Bernemann C, Humberg V, Thielen B, Steinestel J, Chen X, Duensing S, Schrader AJ, Boegemann M. Comparative Analysis of AR Variant AR-V567es mRNA Detection Systems Reveals Eminent Variability and Questions the Role as a Clinical Biomarker in Prostate Cancer. Clin Cancer Res 2019; 25:3856-3864. [DOI: 10.1158/1078-0432.ccr-18-4276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/13/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
|
7
|
Annalora AJ, Jozic M, Marcus CB, Iversen PL. Alternative splicing of the vitamin D receptor modulates target gene expression and promotes ligand-independent functions. Toxicol Appl Pharmacol 2018; 364:55-67. [PMID: 30552932 DOI: 10.1016/j.taap.2018.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
Alternative splicing modulates gene function by creating splice variants with alternate functions or non-coding RNA activity. Naturally occurring variants of nuclear receptor (NR) genes with dominant negative or gain-of-function phenotypes have been documented, but their cellular roles, regulation, and responsiveness to environmental stress or disease remain unevaluated. Informed by observations that class I androgen and estrogen receptor variants display ligand-independent signaling in human cancer tissues, we questioned whether the function of class II NRs, like the vitamin D receptor (VDR), would also respond to alternative splicing regulation. Artificial VDR constructs lacking exon 3 (Dex3-VDR), encoding part of the DNA binding domain (DBD), and exon 8 (Dex8-VDR), encoding part of the ligand binding domain (LBD), were transiently transfected into DU-145 cells and stably-integrated into Caco-2 cells to study their effect on gene expression and cell viability. Changes in VDR promoter signaling were monitored by the expression of target genes (e.g. CYP24A1, CYP3A4 and CYP3A5). Ligand-independent VDR signaling was observed in variants lacking exon 8, and a significant loss of gene suppressor function was documented for variants lacking exon 3. The gain-of-function behavior of the Dex8-VDR variant was recapitulated in vitro using antisense oligonucleotides (ASO) that induce the skipping of exon 8 in wild-type VDR. ASO targeting the splice acceptor site of exon 8 significantly stimulated ligand-independent VDR reporter activity and the induction of CYP24A1 above controls. These results demonstrate how alternative splicing can re-program NR gene function, highlighting novel mechanisms of toxicity and new opportunities for the use of splice-switching oligonucleotides (SSO) in precision medicine.
Collapse
Affiliation(s)
- Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA.
| | - Marija Jozic
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA
| | - Patrick L Iversen
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA; LS Pharma, 884 Park St., Lebanon, OR 97355; USA
| |
Collapse
|
8
|
Kohli M, Ho Y, Hillman DW, Van Etten JL, Henzler C, Yang R, Sperger JM, Li Y, Tseng E, Hon T, Clark T, Tan W, Carlson RE, Wang L, Sicotte H, Thai H, Jimenez R, Huang H, Vedell PT, Eckloff BW, Quevedo JF, Pitot HC, Costello BA, Jen J, Wieben ED, Silverstein KAT, Lang JM, Wang L, Dehm SM. Androgen Receptor Variant AR-V9 Is Coexpressed with AR-V7 in Prostate Cancer Metastases and Predicts Abiraterone Resistance. Clin Cancer Res 2017; 23:4704-4715. [PMID: 28473535 PMCID: PMC5644285 DOI: 10.1158/1078-0432.ccr-17-0017] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/13/2017] [Accepted: 04/27/2017] [Indexed: 01/22/2023]
Abstract
Purpose: Androgen receptor (AR) variant AR-V7 is a ligand-independent transcription factor that promotes prostate cancer resistance to AR-targeted therapies. Accordingly, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The purpose of this study was to understand whether other AR variants may be coexpressed with AR-V7 and promote resistance to AR-targeted therapies.Experimental Design: We utilized complementary short- and long-read sequencing of intact AR mRNA isoforms to characterize AR expression in CRPC models. Coexpression of AR-V7 and AR-V9 mRNA in CRPC metastases and circulating tumor cells was assessed by RNA-seq and RT-PCR, respectively. Expression of AR-V9 protein in CRPC models was evaluated with polyclonal antisera. Multivariate analysis was performed to test whether AR variant mRNA expression in metastatic tissues was associated with a 12-week progression-free survival endpoint in a prospective clinical trial of 78 CRPC-stage patients initiating therapy with the androgen synthesis inhibitor, abiraterone acetate.Results: AR-V9 was frequently coexpressed with AR-V7. Both AR variant species were found to share a common 3' terminal cryptic exon, which rendered AR-V9 susceptible to experimental manipulations that were previously thought to target AR-V7 uniquely. AR-V9 promoted ligand-independent growth of prostate cancer cells. High AR-V9 mRNA expression in CRPC metastases was predictive of primary resistance to abiraterone acetate (HR = 4.0; 95% confidence interval, 1.31-12.2; P = 0.02).Conclusions: AR-V9 may be an important component of therapeutic resistance in CRPC. Clin Cancer Res; 23(16); 4704-15. ©2017 AACR.
Collapse
Affiliation(s)
- Manish Kohli
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Yeung Ho
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - David W Hillman
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, Minnesota
| | - Jamie L Van Etten
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Christine Henzler
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Rendong Yang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Jamie M Sperger
- Department of Medicine, Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Yingming Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | - Ting Hon
- Pacific Biosciences, Menlo Park, California
| | | | - Winston Tan
- Department of Medicine, Mayo Clinic, Jacksonville, Florida
| | - Rachel E Carlson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, Minnesota
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Hugues Sicotte
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, Minnesota
| | - Ho Thai
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Peter T Vedell
- Division of Biomedical Statistics and Informatics, Department of Health Sciences, Rochester, Minnesota
| | | | - Jorge F Quevedo
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Henry C Pitot
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Brian A Costello
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jin Jen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Medical Genome Facility, Mayo Clinic, Rochester, Minnesota
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Eric D Wieben
- Medical Genome Facility, Mayo Clinic, Rochester, Minnesota
| | | | - Joshua M Lang
- Department of Medicine, Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- Department of Urology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
9
|
Sasikumar A, Kamalasanan K. Nanomedicine for prostate cancer using nanoemulsion: A review. J Control Release 2017; 260:111-123. [PMID: 28583444 DOI: 10.1016/j.jconrel.2017.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023]
Abstract
Prostate cancer (PCa) is a worldwide issue, with burgeoning rise in prevalence, morbidity and mortality. Targeted drug delivery, a long sort solution in this regard using controlled release (CR) - nanocarriers, is still a challenge. There is an emerging criticism that, the challenges are due to less appreciation for the biological barriers and lack of corresponding newer technologies. Over the years, more understanding about the biological barriers has come with the progress in characterization techniques. Correspondingly, there is a change in opinion about approaches in clinical trial that; focus of the end point need to be shifted towards disease stabilization for these explorative technologies. Currently, there is a requirement to overcome these newly identified challenges to develop newer affordable therapeutics. The ongoing clinical protocol for therapy using CR-nanocarriers is intravenous injection followed by local targeting to cancer site. This is the most accepted protocol and new CR-nanocarriers are being developed to suit this protocol. In this review, recent progress in treatment of PCa using CR-nanocarriers is analyzed with respect to newly identified biological barriers and design challenges. Possibilities of exploring nanoemulsion (NE) platform for targeted drug delivery to PCa are examined. Repurposing of drugs and combination therapy using NE platform targeted to PCa can be explored for design and development of affordable nanomedicine. In 20yrs. from now there expected to be numerous affordable nanomedicine technologies available in market exploring these lines.
Collapse
Affiliation(s)
- Aravindsiva Sasikumar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham University, Amrita University, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham University, Amrita University, AIMS Health Sciences Campus, Kochi, Kerala, India.
| |
Collapse
|
10
|
|