1
|
Li SC, Wang B, Zhang M, Yin Q, Yang ZY, Li XT, Liang G. Induction of cytochrome P450 via upregulation of CAR and PXR: a potential mechanism for altered florfenicol metabolism by macranthoidin B in vivo. Front Pharmacol 2024; 15:1460948. [PMID: 39444610 PMCID: PMC11496122 DOI: 10.3389/fphar.2024.1460948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Macranthoidin B (MB) is a primary active component of Flos Lonicerae. In Chinese veterinary clinics, Flos Lonicerae is frequently used in combination with florfenicol to prevent and treat infections in livestock and poultry. However, potential interactions between Flos Lonicerae and florfenicol remain unclear. To systematically study these interactions, it is crucial to investigate the individual phytochemicals within Flos Lonicerae. Therefore, MB was selected for this study to assess its effect on the pharmacokinetics of florfenicol in vivo and to explore the underlying mechanisms involved. Methods Male Sprague-Dawley rats were administered MB (60 mg/kg BW) or sterile water orally for 7 consecutive days. On the 8th day, a single oral dose of florfenicol (25 mg/kg BW) was given. Florfenicol pharmacokinetics were analyzed using ultra-high performance liquid chromatography. The hepatic expression levels of cytochrome P450 (CYP1A2, CYP2C11, CYP3A1), UDP-glucuronosyltransferase (UGT1A1), P-glycoprotein (P-gp), and nuclear receptors, including constitutive androstane receptor (CAR), pregnane X receptor (PXR), and retinoid X receptor alpha (RXRα), were quantified via reverse transcription-quantitative polymerase chain reaction and Western blotting (WB). Hepatic CYP1A2 and CYP2C11 activities were measured using a cocktail method. Additionally, the subcellular expression and localization of CAR, PXR, and RXRαin hepatocytes was assessed using WB and immunofluorescence staining. Results MB significantly reduces the AUC(0-∞) and MRT(0-∞) of florfenicol. MB also markedly upregulates the mRNA and protein expression of hepatic CYP1A2 and CYP2C11, along with their catalytic activities. Substantial upregulation of CAR and PXR proteins occurs in the hepatocyte nucleus, along with significant nuclear colocalization of the transcriptionally active CAR/RXRα and PXR/RXRαheterodimers, indicating MB-induced nuclear translocation of both CAR and PXR. Discussion These findings suggest that MB-induced alterations in florfenicol pharmacokinetics, particularly its accelerated elimination, may be due to increased expression and activities of CYP1A2 and CYP2C11, with CAR and PXR potentially involved in these regulatory effects. Further investigation is yet needed to fully elucidate the clinical implications of these interactions concerning the efficacy of florfenicol in veterinary medicine.
Collapse
Affiliation(s)
- Si-cong Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Bin Wang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Min Zhang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Qin Yin
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zi-yi Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Xu-ting Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Ge Liang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| |
Collapse
|
2
|
Li SC, Zhang M, Wang B, Li XT, Liang G. Coptisine Modulates the Pharmacokinetics of Florfenicol by targeting CYP1A2, CYP2C11 and CYP3A1 in the Liver and P-gp in the Jejunum of Rats: A Pilot Study. Xenobiotica 2023:1-8. [PMID: 37144948 DOI: 10.1080/00498254.2023.2211135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
1. Coptisine (COP) is the main active ingredient of Coptis chinensis. In Chinese veterinary clinics, Coptis chinensis is commonly used alongside florfenicol to treat intestinal infections. The goal of this study was to investigate the impact of COP co-administration on the pharmacokinetics of florfenicol in rats.2. Male Sprague-Dawley rats were orally administered COP (50 mg/kg BW) or sterile water for 7 consecutive days, followed by a single oral dose of florfenicol (25 mg/kg BW) on the 8th day. Pharmacokinetics of florfenicol were analyzed using non-compartmental methods, while expression levels of cytochrome P450 (CYP) isoforms in the liver and P-glycoprotein (P-gp) in the jejunum were measured using real-time RT-PCR, Western blot and immunohistochemical analyses.3. Co-administration of COP and florfenicol significantly increased AUC(0-∞), MRT(0-∞), and Cmax of florfenicol, while CLz/F was significantly decreased. COP down-regulated the expression of CYP1A2, CYP2C11, and CYP3A1 in the liver, as well as P-gp in the jejunum.4. These findings suggest that co-administration of COP with florfenicol alters the pharmacokinetics of florfenicol in rats. The down-regulation of CYP and P-gp expression may contribute to this effect. Therefore, the co-administration of COP with florfenicol may enhance the prophylactic or therapeutic efficacy of florfenicol in veterinary practice.
Collapse
Affiliation(s)
- Si-Cong Li
- Sichuan Key Laboratory of Animal Genetics and Breeding, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and GCP Experimental Animal Centre, Lezhi, China
| | - Min Zhang
- Sichuan Key Laboratory of Animal Genetics and Breeding, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and GCP Experimental Animal Centre, Lezhi, China
| | - Bin Wang
- Sichuan Key Laboratory of Animal Genetics and Breeding, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and GCP Experimental Animal Centre, Lezhi, China
| | - Xu-Ting Li
- Sichuan Key Laboratory of Animal Genetics and Breeding, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and GCP Experimental Animal Centre, Lezhi, China
| | - Ge Liang
- Sichuan Key Laboratory of Animal Genetics and Breeding, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and GCP Experimental Animal Centre, Lezhi, China
| |
Collapse
|
3
|
Zhang M, Wang B, Li XT, Yin Q, Liang G, Li SC. Impact of tectoridin on the pharmacokinetics of florfenicol via targeting cytochrome P450 and P-glycoprotein of rats. Xenobiotica 2023; 53:429-437. [PMID: 37781957 DOI: 10.1080/00498254.2023.2261040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Belamcanda chinensis (L.) DC, commonly used with florfenicol in Chinese veterinary clinics for respiratory tract infections, contains the major effective isoflavone, tectoridin (TEC). This study aimed to investigate the impact of TEC co-administration on the pharmacokinetics of florfenicol in vivo.Male rats received oral TEC (50 mg/kg BW) or sterile water for seven days, followed by a single oral dose of florfenicol (25 mg/kg BW) on the 8th day. Non-compartmental methods analysed the pharmacokinetics of florfenicol, while real-time reverse transcription polymerase chain reaction (RT-PCR), Western blot, and immunohistochemical analyses measured expression levels of cytochrome P450 (CYP) isoforms in the liver and P-glycoprotein (P-gp) in the jejunum.TEC significantly decreased florfenicol's AUC(0-∞), MRT(0-∞), t1/2z, Vz/F, and Cmax by 24.75%, 18.43%, 55.47%, 43.05%, and 19.48%, while increasing CLz/F by 33.33%. TEC also up-regulated hepatic CYP1A2 and CYP3A1 mRNA expression, as well as intestinal MDR1, by 1.39-fold, 1.85-fold, and 1.65-fold. This coincided with a respective increase in protein expression by 1.37-fold, 1.39-fold, and 1.43-fold.These findings suggest that TEC-induced alterations in the pharmacokinetics of florfenicol may be attributed to increased CYP and P-gp expression. Further investigations are warranted to understand the implications of these findings on the clinical effectiveness of florfenicol in veterinary practice.
Collapse
Affiliation(s)
- Min Zhang
- Sichuan Key Laboratory of Animal Genetics and Breeding, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and GCP Experimental Animal Centre, Lezhi, China
| | - Bin Wang
- Sichuan Key Laboratory of Animal Genetics and Breeding, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and GCP Experimental Animal Centre, Lezhi, China
| | - Xu-Ting Li
- Sichuan Key Laboratory of Animal Genetics and Breeding, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and GCP Experimental Animal Centre, Lezhi, China
| | - Qin Yin
- Sichuan Key Laboratory of Animal Genetics and Breeding, Sichuan Animal Science Academy, Chengdu, China
| | - Ge Liang
- Sichuan Key Laboratory of Animal Genetics and Breeding, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and GCP Experimental Animal Centre, Lezhi, China
| | - Si-Cong Li
- Sichuan Key Laboratory of Animal Genetics and Breeding, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and GCP Experimental Animal Centre, Lezhi, China
| |
Collapse
|
4
|
Chai YY, Xu YX, Xia ZY, Li AQ, Huang X, Zhang LY, Jiang ZZ. Influence of Zhuanggu Guanjie Pill on Seven Cytochrome P450 Enzymes Based on Probe Cocktail and Pharmacokinetics Approaches. Curr Drug Metab 2022; 23:1054-1066. [PMID: 36503399 DOI: 10.2174/1389200224666221209154002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The use of herbal medicines has tremendously increased over the past few decades. Case reports and controlled clinical investigations of herbal-drug interactions have been reported. Since Cytochrome P450 (CYP) enzymes play an important role in drug interactions. The evaluation of the influence of herbal medicines on the activities of CYPs is beneficial to promote scientific and rational clinical use of herbal medicines. OBJECTIVE Herein, we aimed to develop and validate a method to simultaneously quantify seven CYP cocktail probe drugs consisting of phenacetin (PNC), bupropion (BPP), losartan potassium (LK), omeprazole (OMP), dextromethorphan (DM), chlorzoxazone (CZZ) and midazolam (MDZ) and their respective metabolites in a single acquisition run and use this method to evaluate the influence of Zhuanggu Guanjie Pill (ZGGJP) on seven CYPs. METHODS A cost-effective and simple UHPLC-(±)ESI-MS/MS method for simultaneous determination of seven probe drugs and metabolites in rat plasma was developed and validated. Male and female rats were randomly divided into three groups and treated with 1.2 g/kg/d ZGGJP, 5 g/kg/d ZGGJP and 0.5% CMC-Na for 14 consecutive days. After 24 h of the last administration, all rats were administrated orally with probe drugs. The influence of ZGGJP on the CYPs was carried out by comparing the metabolic ratio (Cmax, AUC0-t) of metabolites/probe drugs in rats. RESULTS The calibration curves were linear, with correlation coefficient > 0.99 for seven probe drugs and their corresponding metabolites. Intra- and inter-day precisions were not greater than 15% RSD and the accuracies were within ± 15% of nominal concentrations. The ZGGJP showed significant inductive effect on CYP1A2, CYP2B6, CYP2C9 and CYP3A in male and female rats. CONCLUSION ZGGJP had inductive effects on CYP1A2, CYP2B6, CYP2C9 and CYP3A in male and female rats.
Collapse
Affiliation(s)
- Yuan-Yuan Chai
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun-Xia Xu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Zi-Yin Xia
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - An-Qin Li
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Huang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Lu-Yong Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhen-Zhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
5
|
Li S, Li X, Yuan D, Wang B, Yang R, Zhang M, Li J, Zeng F. Effects of paeoniflorin on the activities and mRNA expression of rat CYP1A2, CYP2C11 and CYP3A1 enzymes in vivo. Xenobiotica 2021; 51:961-967. [PMID: 29160125 DOI: 10.1080/00498254.2017.1404659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Paeoniflorin is the major constituent in extracts of the paeony root, the purpose of the present study was to assess the effects of paeoniflorin on the activities and mRNA expression of the rat hepatic drug-metabolizing enzymes cytochrome P450 (CYP1A2), CYP2C11 and CYP3A1 in vivo.Sprague-Dawley (SD) male rats were treated with paeoniflorin at the dosage of 25, 50 and 100 mg/kg or 0.9% sodium chloride solution by intragastric administration for 7 days, then were given probe drugs phenacetin (CYP1A2), tolbutamide (CYP2C11), or midazolam (CYP3A1) orally on the eighth day. Blood samples were collected at various times, and the plasma concentrations of the probe drugs were estimated with ultra-high-performance liquid chromatography. The mRNA expression levels of rat hepatic CYP1A2, CYP2C11 and CYP3A1 were analysed with real-time PCR.The pharmacokinetic results indicated that paeoniflorin inhibits the activities of CYP1A2, CYP2C11 and CYP3A1 in vivo. The effect was most pronounced on CYP3A1, according to the United States Food and Drug Administration classification of inhibitors of CYP3A, it reached the category of moderate inhibition. The mRNA expression levels of 3 CYP enzymes were also tended to be inhibited.We conclude that paeoniflorin can inhibit the activities of CYP1A2, CYP2C11 and CYP3A1 in vivo, which may affect the metabolism of drugs that are primarily dependent on these pathways.
Collapse
Affiliation(s)
- Sicong Li
- Sichuan Animal Science Academy, Chengdu, China
| | - Xuting Li
- Sichuan Animal Science Academy, Chengdu, China
| | | | - Bin Wang
- Sichuan Animal Science Academy, Chengdu, China
| | - Rui Yang
- Sichuan Animal Science Academy, Chengdu, China
| | - Min Zhang
- Sichuan Animal Science Academy, Chengdu, China
| | - Jinliang Li
- Sichuan Animal Science Academy, Chengdu, China
| | | |
Collapse
|
6
|
Li XT, Li SC, Wang B, Yang R, Zhang M, Li JL, Huang W, Cao L, Xiao SY. Effects of baicalin on pharmacokinetics of florfenicol and mRNA expression of CYP1A2, CYP2C11, CYP3A1, UGT1A1, MDR1, and ABCC2 in rats. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_261_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Li Q, Sun M, Li G, Qiu L, Huang Z, Gong J, Huang J, Li G, Si L. The sub-chronic impact of mPEG2k-PCLx polymeric nanocarriers on cytochrome P450 enzymes after intravenous administration in rats. Eur J Pharm Biopharm 2019; 142:101-113. [DOI: 10.1016/j.ejpb.2019.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 01/21/2023]
|
8
|
Qiu L, Li Q, Huang J, Wu Q, Tu K, Wu Y, Zhang X, Qian J, Zhang R, Li G, Sun M, Si L. In vitro effect of mPEG2k-PCLx micelles on rat liver cytochrome P450 enzymes. Int J Pharm 2018; 552:99-110. [PMID: 30253212 DOI: 10.1016/j.ijpharm.2018.09.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/03/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
|
9
|
Effect of Gambogenic Acid on Cytochrome P450 1A2, 2B1 and 2E1, and Constitutive Androstane Receptor in Rats. Eur J Drug Metab Pharmacokinet 2018; 43:655-664. [DOI: 10.1007/s13318-018-0477-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Chang J, Li W, Xu P, Guo B, Wang Y, Li J, Wang H. The tissue distribution, metabolism and hepatotoxicity of benzoylurea pesticides in male Eremias argus after a single oral administration. CHEMOSPHERE 2017; 183:1-8. [PMID: 28511076 DOI: 10.1016/j.chemosphere.2017.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Benzoylurea pesticides (BPUs) are widely used to control the locust, but the toxicokinetics and hepatotoxicity of BPUs in lizards have not been investigated. In this study, the tissue distribution, metabolism and liver toxicity of diflubenzuron and flufenoxuron were assessed in the Eremias argus following a single oral exposure. Diflubenzuron preferred to accumulate in the fat and brain (>1.0 mg kg-1) and was rapidly eliminate in other tissues. In the liver, 4-chloroaniline was one of diflubenzuron metabolites, although with a concentration less than 0.05% of the accumulated diflubenzuron. No significant difference was observed in the liver histopathology between the control and diflubenzuron exposure group. The expressions of Cyp1a and Ahr gene which control the cell apoptosis were also equal to the control level. After flufenoxuron exposure, biomodal phenomenon was observed in the liver, skin, brain, gonad, kidney, heart and blood circulation was an important route for the flufenoxuron penetration. The concentrations of flufenoxuron in all tissues were greater than 1.0 mg kg-1 at 168 h. The excretion of flufenoxuron in the faeces was 1.5 fold higher than diflubenzuron. The hepatocytes in the flufenoxuron treated group showed vacuolation of cytoplasm and decreased nucleus. In addition, the Cyp1a and Ahr genes were significantly up-regulated in the flufenoxuron exposure group. These results suggested that the higher hepatotoxicity of flufenoxuron may be attributed to the higher residual level in the lizard tissues and the Cyp1a and Ahr genes can serve as biomarkers to assess the liver toxicity.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Huili Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China.
| |
Collapse
|
11
|
Sun Y, Liu Y, Zhang X, Wan C, Lyu T, Zhang L. Effects of m-nisoldipine on the activity and mRNA expression of four CYP isozymes in rats. Xenobiotica 2017; 48:676-683. [DOI: 10.1080/00498254.2017.1358831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yupeng Sun
- Department of Pharmaceutical Analysis and
| | - Yanyan Liu
- Department of Pharmaceutical Analysis and
| | - Xia Zhang
- Department of Pharmaceutical Analysis and
| | | | - Tao Lyu
- Pharmaceutical Experimental Center, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | | |
Collapse
|
12
|
Ramakrishna R, Kumar D, Bhateria M, Gaikwad AN, Bhatta RS. 16-Dehydropregnenolone lowers serum cholesterol by up-regulation of CYP7A1 in hyperlipidemic male hamsters. J Steroid Biochem Mol Biol 2017; 168:110-117. [PMID: 28232149 DOI: 10.1016/j.jsbmb.2017.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
Abstract
16-Dehydropregnenolone (DHP) has been developed and patented as a promising antihyperlipidemic agent by CSIR-Central Drug Research Institute (CSIR-CDRI), India. Although DHP is implicated in controlling cholesterol homeostasis, the mechanism underlying its pharmacological effect in hyperlipidemic disease models is poorly understood. In the present study, we postulated that DHP lowers serum lipids through regulating the key hepatic genes accountable for cholesterol metabolism. The hypothesis was tested on golden Syrian hamsters fed with high-fat diet (HFD) following oral administration of DHP at a dose of 72mg/kg body weight for a period of one week. The serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and total bile acids (TBA) in feces were measured. Real time comparative gene expression studies were performed for CYP7A1, LXRα and PPARα level in liver tissue of hamsters. The results revealed that the DHP profoundly decreased the levels of serum TC, TG, LDL-C and atherogenic index (AI), whilst elevated the HDL-C/TC ratio. Besides, DHP exhibited an anti-hyperlipidemic effect in the HFD induced hyperlipidemic hamsters by means of: (1) up-regulating the gene expression of CYP7A1 encoded cholesterol 7α-hydroxylase, that promotes the catabolism of cholesterol to bile acid; (2) inducing the gene expression of transcription factors LXRα and PPARα; (3) increasing the TBA excretion through feces. Collectively, the findings presented confer the hypolipidemic activity of DHP via up-regulation of hepatic CYP7A1 pathway that promotes cholesterol-to-bile acid conversion and bile acid excretion.
Collapse
Affiliation(s)
- Rachumallu Ramakrishna
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Durgesh Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Manisha Bhateria
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Anil Nilkanth Gaikwad
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Rabi Sankar Bhatta
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi 110001, India.
| |
Collapse
|
13
|
Bhateria M, Rachumallu R, Yerrabelli S, Saxena AK, Bhatta RS. Insight into stereoselective disposition of enantiomers of a potent antithrombotic agent, S002-333 following administration of the racemic compound to mice. Eur J Pharm Sci 2017; 101:107-114. [DOI: 10.1016/j.ejps.2017.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 11/30/2022]
|