1
|
Guzman J, Weigelt K, Neumann A, Tripal P, Schmid B, Winter Z, Palmisano R, Culig Z, Cronauer MV, Muschler P, Wullich B, Taubert H, Wach S. NanoLuc Binary Technology as a methodological approach: an important new tool for studying the localization of androgen receptor and androgen receptor splice variant V7 homo and heterodimers. BMC Cancer 2024; 24:346. [PMID: 38500100 PMCID: PMC10949640 DOI: 10.1186/s12885-024-12110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The androgen/androgen receptor (AR)-signaling axis plays a central role in prostate cancer (PCa). Upon androgen-binding the AR dimerizes with another AR, and translocates into the nucleus where the AR-dimer activates/inactivates androgen-dependent genes. Consequently, treatments for PCa are commonly based on androgen deprivation therapy (ADT). The clinical benefits of ADT are only transitory and most tumors develop mechanisms allowing the AR to bypass its need for physiological levels of circulating androgens. Clinical failure of ADT is often characterized by the synthesis of a constitutively active AR splice variant, termed AR-V7. AR-V7 mRNA expression is considered as a resistance mechanism following ADT. AR-V7 no longer needs androgenic stimuli for nuclear entry and/or dimerization. METHODS Our goal was to mechanistically decipher the interaction between full-length AR (AR-FL) and AR-V7 in AR-null HEK-293 cells using the NanoLuc Binary Technology under androgen stimulation and deprivation conditions. RESULTS Our data point toward a hypothesis that AR-FL/AR-FL homodimers form in the cytoplasm, whereas AR-V7/AR-V7 homodimers localize in the nucleus. However, after androgen stimulation, all the AR-FL/AR-FL, AR-FL/AR-V7 and AR-V7/AR-V7 dimers were localized in the nucleus. CONCLUSIONS We showed that AR-FL and AR-V7 form heterodimers that localize to the nucleus, whereas AR-V7/AR-V7 dimers were found to localize in the absence of androgens in the nucleus.
Collapse
Affiliation(s)
- Juan Guzman
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, 91054, Germany
| | - Katrin Weigelt
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, 91054, Germany
| | - Angela Neumann
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, 91054, Germany
| | - Philipp Tripal
- Optical Imaging Centre Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Zoltán Winter
- Optical Imaging Centre Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Ralph Palmisano
- Optical Imaging Centre Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Zoran Culig
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Marcus V Cronauer
- Institute of Pathology, Universitätsklinikum Bonn, Universität Bonn, Bonn, 53127, Germany
| | | | - Bernd Wullich
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, 91054, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, 91054, Germany.
| | - Sven Wach
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, 91054, Germany
| |
Collapse
|
2
|
Development of Novel Inhibitors Targeting the D-Box of the DNA Binding Domain of Androgen Receptor. Int J Mol Sci 2021; 22:ijms22052493. [PMID: 33801338 PMCID: PMC7958344 DOI: 10.3390/ijms22052493] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 01/01/2023] Open
Abstract
The inhibition of the androgen receptor (AR) is an established strategy in prostate cancer (PCa) treatment until drug resistance develops either through mutations in the ligand-binding domain (LBD) portion of the receptor or its deletion. We previously identified a druggable pocket on the DNA binding domain (DBD) dimerization surface of the AR and reported several potent inhibitors that effectively disrupted DBD-DBD interactions and consequently demonstrated certain antineoplastic activity. Here we describe further development of small molecule inhibitors of AR DBD dimerization and provide their broad biological characterization. The developed compounds demonstrate improved activity in the mammalian two-hybrid assay, enhanced inhibition of AR-V7 transcriptional activity, and improved microsomal stability. These findings position us for the development of AR inhibitors with entirely novel mechanisms of action that would bypass most forms of PCa treatment resistance, including the truncation of the LBD of the AR.
Collapse
|
3
|
Thelen P, Taubert H, Duensing S, Kristiansen G, Merseburger AS, Cronauer MV. [The impact of the androgen receptor splice variant AR-V7 on the prognosis and treatment of advanced prostate cancer]. Aktuelle Urol 2020; 51:582-592. [PMID: 29370587 DOI: 10.1055/s-0043-115426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A recently discovered mechanism enabling prostate cancer cells to escape the effects of endocrine therapies consists in the synthesis of C-terminally truncated, constitutively active androgen receptor (AR) splice variants (AR-V). Devoid of a functional C-terminal hormone/ligand binding domain, various AR-Vs are insensitive to therapies targeting the androgen/AR signalling axis. Preliminary studies suggest that AR-V7, the most common AR-V, is a promising predictive tumour marker and a relevant selection marker for the treatment of advanced prostate cancer. This review critically outlines recent advances in AR-V7 diagnostics and presents an overview of current AR-V7 targeted therapies.
Collapse
Affiliation(s)
- P. Thelen
- Klinik für Urologie, Universitätsmedizin Göttingen, 37099 Göttingen
| | - H. Taubert
- Urologische und Kinderurologische Klinik, Universitätsklinikum Erlangen, 91054 Erlangen
| | - S. Duensing
- Urologische Klinik, Sektion für Molekulare Uro-Onkologie, Universitätsklinikum Heidelberg, 69120 Heidelberg
| | - G. Kristiansen
- Institut für Pathologie, Universitätsklinikum Bonn, 53127 Bonn
| | - A. S. Merseburger
- Klinik für Urologie, Universitätsklinikum Schleswig-Holstein – Campus Lübeck, 23538 Lübeck
| | - M. V. Cronauer
- Klinik für Urologie, Universitätsklinikum Schleswig-Holstein – Campus Lübeck, 23538 Lübeck
| |
Collapse
|
4
|
The Androgen Receptor in Prostate Cancer: Effect of Structure, Ligands and Spliced Variants on Therapy. Biomedicines 2020; 8:biomedicines8100422. [PMID: 33076388 PMCID: PMC7602609 DOI: 10.3390/biomedicines8100422] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) plays a predominant role in prostate cancer (PCa) pathology. It consists of an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region (HR), and a ligand-binding domain (LBD) that binds androgens, including testosterone (T) and dihydrotestosterone (DHT). Ligand binding at the LBD promotes AR dimerization and translocation to the nucleus where the DBD binds target DNA. In PCa, AR signaling is perturbed by excessive androgen synthesis, AR amplification, mutation, or the formation of AR alternatively spliced variants (AR-V) that lack the LBD. Current therapies for advanced PCa include androgen synthesis inhibitors that suppress T and/or DHT synthesis, and AR inhibitors that prevent ligand binding at the LBD. However, AR mutations and AR-Vs render LBD-specific therapeutics ineffective. The DBD and NTD are novel targets for inhibition as both perform necessary roles in AR transcriptional activity and are less susceptible to AR alternative splicing compared to the LBD. DBD and NTD inhibition can potentially extend patient survival, improve quality of life, and overcome predominant mechanisms of resistance to current therapies. This review discusses various small molecule and other inhibitors developed against the DBD and NTD—and the current state of the available compounds in clinical development.
Collapse
|
5
|
Advances of Zinc Signaling Studies in Prostate Cancer. Int J Mol Sci 2020; 21:ijms21020667. [PMID: 31963946 PMCID: PMC7014440 DOI: 10.3390/ijms21020667] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers and the second leading cause of cancer-related death among men worldwide. Despite progresses in early diagnosis and therapeutic strategies, prognosis for patients with advanced PCa remains poor. Noteworthily, a unique feature of healthy prostate is its highest level of zinc content among all soft tissues in the human body, which dramatically decreases during prostate tumorigenesis. To date, several reviews have suggested antitumor activities of zinc and its potential as a therapeutic strategy of PCa. However, an overview about the role of zinc and its signaling in PCa is needed. Here, we review literature related to the content, biological function, compounds and clinical application of zinc in PCa. We first summarize zinc content in prostate tissue and sera of PCa patients with their clinical relevance. We then elaborate biological functions of zinc signaling in PCa on three main aspects, including cell proliferation, death and tumor metastasis. Finally, we discuss clinical applications of zinc-containing compounds and proteins involved in PCa signaling pathways. Based on currently available studies, we conclude that zinc plays a tumor suppressive role and can serve as a biomarker in PCa diagnosis and therapies.
Collapse
|
6
|
[Inhibitors of the androgen receptor N‑terminal domain : Therapies targeting the Achilles' heel of various androgen receptor molecules in advanced prostate cancer]. Urologe A 2019; 57:148-154. [PMID: 29147733 DOI: 10.1007/s00120-017-0541-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although prostate cancer responds well to primary endocrine therapies, tumor progression with castration resistant tumor cells almost invariably occurs within a few years. Unfortunately, some CRPC patients do not respond to second-line therapies with abiraterone or enzalutamide. Moreover, patients who initially responded well to second-line hormone therapy develop resistance to abiraterone and/or enzalutamide within a short period of time. Besides an increase of intracellular androgen receptor (AR) levels, the predominant resistance mechanisms include AR aberrations (point mutations, AR splice variants) occurring predominantly at the androgen or ligand binding domain of the AR. The following review delineates recent progress in the development of AR inhibitors that do not depend on androgen binding and represent a putative third generation of AR inhibitors.
Collapse
|
7
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
8
|
Xia N, Cui J, Zhu M, Xing R, Lu Y. Androgen receptor variant 12 promotes migration and invasion by regulating MYLK in gastric cancer. J Pathol 2019; 248:304-315. [PMID: 30737779 DOI: 10.1002/path.5257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/14/2019] [Accepted: 02/06/2019] [Indexed: 12/30/2022]
Abstract
Androgen receptor (AR) and its variants (AR-Vs) promote tumorigenesis and metastasis in many hormone-related cancers, such as breast, prostate and hepatocellular cancers. However, the expression patterns and underlying molecular mechanisms of AR in gastric cancer (GC) are not fully understood. This study aimed to detect the expression of AR-Vs in GC and explored their role in metastasis of GC. Here, the AR expression form was identified in GC cell lines and tissues by RT-PCR and qPCR. Transwell assays and experimental lung metastasis animal models were used to assess the function of AR in cell migration and invasion. Downstream targets of AR were screened by bioinformatics, and identified by luciferase reporter assays and electrophoretic mobility shift assays. AR-v12 was identified as the main expression form in GC cell lines and tissues. Different from full length of AR, AR-v12 was localized to the nucleus independent of androgen. Upregulation of AR-v12 in primary GC tissues was significantly associated with metastasis. Overexpression of AR-v12 promoted migration and invasion independent of androgen. Knockdown of AR-v12 inhibited migration and invasion in vitro, as well as metastasis in vivo. Furthermore, AR-v12, serving as a transcription factor, promoted metastasis through regulating the promoter activity of MYLK. In AR-v12 overexpressing cells, knockdown of MYLK inhibited cell migration and invasion, while in AR-v12 knocked-down cells, overexpression of MYLK promoted cell migration and invasion. Collectively, our study demonstrates that AR-v12 is highly expressed in GC tissues and promotes migration and invasion through directly regulating MYLK. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nan Xia
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Jiantao Cui
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Min Zhu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Rui Xing
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, PR China.,Department of Medical Oncology, Beijing Hospital, Beijing 100730, PR China
| |
Collapse
|
9
|
Wach S, Taubert H, Cronauer M. Role of androgen receptor splice variants, their clinical relevance and treatment options. World J Urol 2019; 38:647-656. [PMID: 30659302 DOI: 10.1007/s00345-018-02619-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/24/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE In this review, we summarize the importance of AR variants with a particular focus on clinically relevant members of this family. METHODS A non-systematic literature review was performed based on Medline and PubMed. RESULTS Endocrine therapy represents the central paradigm for the management of prostate cancer. Eventually, in response to androgen ablation therapy, several resistance mechanisms against the endocrine therapy might develop that can circumvent the therapy approaches. One specific resistance mechanism that has gained increasing attention is the generation of alternatively spliced variants of the androgen receptor, with AR-V7 being the most prominent. More broadly, AR-V7 is one member of a group of alternatively spliced AR variants that share a common feature, the missing ligand-binding domain. These ΔLBD androgen receptor variants have shown the capability to induce androgen receptor-mediated gene transcription even under conditions of androgen deprivation and to drive cancer progression. CONCLUSION The methods used for detecting AR-Vs, at least on the mRNA level, are well-advanced and harbor the potential to be introduced into clinical diagnostics. It is important to note, that the testing, especially of AR-V7 has its limitations in predicting treatment response. More promising is the great number of active clinical trials aimed at reducing the AR-Vs, and using this to re-sensitize CRPC towards endocrine treatment might provide additional treatment options for CRPC patients in the future.
Collapse
MESH Headings
- Alternative Splicing
- Androgen Antagonists/therapeutic use
- Androstadienes/therapeutic use
- Antineoplastic Agents, Hormonal/therapeutic use
- Benzamides/therapeutic use
- Benzhydryl Compounds/therapeutic use
- Benzimidazoles/therapeutic use
- Benzoquinones/therapeutic use
- Binding Sites/genetics
- Chlorohydrins/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Enzyme Inhibitors/therapeutic use
- Gene Expression Regulation, Neoplastic
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- Humans
- Isoindoles/therapeutic use
- Isoxazoles/therapeutic use
- Lactams, Macrocyclic/therapeutic use
- Male
- Niclosamide/therapeutic use
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Protein Domains/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Proteins/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Resorcinols/therapeutic use
Collapse
Affiliation(s)
- S Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander-University Erlangen-Nürnberg, Hartmannstrasse 14, 91054, Erlangen, Germany.
| | - H Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander-University Erlangen-Nürnberg, Hartmannstrasse 14, 91054, Erlangen, Germany
| | - M Cronauer
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| |
Collapse
|
10
|
Dalal K, Ban F, Li H, Morin H, Roshan-Moniri M, Tam KJ, Shepherd A, Sharma A, Peacock J, Carlson ML, LeBlanc E, Perez C, Duong F, Ong CJ, Rennie PS, Cherkasov A. Selectively targeting the dimerization interface of human androgen receptor with small-molecules to treat castration-resistant prostate cancer. Cancer Lett 2018; 437:35-43. [PMID: 30165195 DOI: 10.1016/j.canlet.2018.08.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
Prostate cancer (PCa) is a leading cause of death for men in North America. The androgen receptor (AR) - a hormone inducible transcription factor - drives expression of tumor promoting genes and represents an important therapeutic target in PCa. The AR is activated by steroid recruitment to its ligand binding domain (LBD), followed by receptor nuclear translocation and dimerization via the DNA binding domain (DBD). Clinically used small molecules interfere with steroid recruitment and prevent AR-driven tumor growth, but are rendered ineffective by emergence of LBD mutations or expression of constitutively active variants, such as ARV7, that lack the LBD. Both drug-resistance mechanisms confound treatment of this 'castration resistant' stage of PCa (CRPC), characterized by return of AR signalling. Here, we employ computer-aided drug-design to develop small molecules that block the AR-DBD dimerization interface, an attractive target given its role in AR activation and independence from the LBD. Virtual screening on the AR-DBD structure led to development of prototypical compounds that block AR dimerization, inhibiting AR-transcriptional activity through a LBD-independent mechanism. Such inhibitors may potentially circumvent AR-dependent resistance mechanisms and directly target CRPC tumor growth.
Collapse
Affiliation(s)
- Kush Dalal
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Fuqiang Ban
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Huifang Li
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Hélène Morin
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Mani Roshan-Moniri
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Kevin J Tam
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Ashley Shepherd
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Aishwariya Sharma
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - James Peacock
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Michael L Carlson
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Eric LeBlanc
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Carl Perez
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Franck Duong
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada.
| |
Collapse
|
11
|
Hupe MC, Hoda MR, Zengerling F, Perner S, Merseburger AS, Cronauer MV. The BET-inhibitor PFI-1 diminishes AR/AR-V7 signaling in prostate cancer cells. World J Urol 2018; 37:343-349. [PMID: 29934670 DOI: 10.1007/s00345-018-2382-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE The bromodomain and extra-terminal (BET) family of proteins provides a scaffolding platform for the recruitment and tethering of transcription factors to acetylated chromatin, thereby modulating gene expression. In this study, we evaluated the efficacy of the BET-inhibitor PFI-1 to diminish AR/AR-V7 signaling and proliferation in castration-resistant prostate cancer cells. METHODS Prostate-specific antigen and androgen receptor (AR) protein were quantified by means of two commercial ELISAs. Transactivation of the AR, AR-V7 and Q641X was determined by reporter gene assays. Cell proliferation was measured using a colorimetric MTT-assay. RESULTS PFI-1 dose-dependently inhibited transactivation of full-length AR (non- mutated, i.e., wild-type or point-mutated/promiscuous forms) without affecting their cellular protein levels. Moreover, PFI-1 was active against C-terminally truncated constitutively active ARs like AR-V7 and Q641X. Prostate cancer cells exhibiting a transcriptionally active AR-signaling complex (LNCaP, 22Rv1) were more susceptible to the growth-inhibitory effects than the AR-negative PC-3 cells. CONCLUSION The quinazolinone PFI-1 is a highly efficient inhibitor of AR-signaling-competent prostate cancer cells in vitro. PFI-1 could serve as a lead compound for the development of new therapeutics able to block AR/AR-V7 signaling in advanced prostate cancer.
Collapse
Affiliation(s)
- Marie C Hupe
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - M Raschid Hoda
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | | | - Sven Perner
- Pathology of the University Hospital Schleswig-Holstein, Campus Lübeck and Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Marcus V Cronauer
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
12
|
Del Re M, Crucitta S, Restante G, Rofi E, Arrigoni E, Biasco E, Sbrana A, Coppi E, Galli L, Bracarda S, Santini D, Danesi R. Pharmacogenetics of androgen signaling in prostate cancer: Focus on castration resistance and predictive biomarkers of response to treatment. Crit Rev Oncol Hematol 2018; 125:51-59. [DOI: 10.1016/j.critrevonc.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/24/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
|
13
|
Abstract
Androgen deprivation is still standard therapy for prostate cancer, either as primary androgen deprivation therapy or with the use of secondary hormonal drugs including abiraterone and enzalutamide. However, especially the clinically occult side effects like metabolic changes or cardiovascular complications and effects on the psyche of the patient are often not recognized in daily practice. Active monitoring of such side effects is essential for prevention and early intervention. In addition, the efficacy of androgen deprivation therapies is limited by primary and secondary resistance. The underlying molecular mechanism including splice variants of the androgen receptor in contrast to mutations are usually reversible and should be regarded as a sign of efficacy of the current treatment. Therefore, the clever, timely use of androgen deprivation or even the use of a bipolar androgen therapy should enable reversal of resistance to again render tumor cells sensitive to androgen-deprivation therapy.
Collapse
Affiliation(s)
- C H Ohlmann
- Klinik für Urologie und Kinderurologie, Universität des Saarlandes, 66421, Homburg/Saar, Deutschland.
| | - P Thelen
- Klinik für Urologie, Universitätsmedizin Göttingen, 37099 Göttingen, Deutschland
| |
Collapse
|
14
|
Cronauer MV, Merseburger AS, Hoda MR. Re: Christof Bernemann, Thomas J. Schnoeller, Manuel Luedeke, et al. Expression of AR-V7 in Circulating Tumour Cells Does Not Preclude Response to Next Generation Androgen Deprivation Therapy in Patients with Castration Resistant Prostate Cancer. Eur Urol 2017;71:1–3. Eur Urol 2017; 71:e105-e106. [DOI: 10.1016/j.eururo.2016.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
|