1
|
Nishikawa M, Murose N, Mano H, Yasuda K, Isogai Y, Kittaka A, Takano M, Ikushiro S, Sakaki T. Robust osteogenic efficacy of 2α-heteroarylalkyl vitamin D analogue AH-1 in VDR (R270L) hereditary vitamin D-dependent rickets model rats. Sci Rep 2022; 12:12517. [PMID: 35869242 PMCID: PMC9307643 DOI: 10.1038/s41598-022-16819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Active vitamin D form 1α,25-dihydroxtvitamin D3 (1,25(OH)2D3) plays pivotal roles in calcium homeostasis and osteogenesis via its transcription regulation effect via binding to vitamin D receptor (VDR). Mutated VDR often causes hereditary vitamin D-dependent rickets (VDDR) type II, and patients with VDDR-II are hardly responsive to physiological doses of 1,25(OH)D3. Current therapeutic approaches, including high doses of oral calcium and supraphysiologic doses of 1,25(OH)2D3, have limited success and fail to improve the quality of life of affected patients. Thus, various vitamin D analogues have been developed as therapeutic options. In our previous study, we generated genetically modified rats with mutated Vdr(R270L), an ortholog of human VDR(R274L) isolated from the patients with VDDR-II. The significant reduced affinity toward 1,25(OH)2D3 of rat Vdr(R270L) enabled us to evaluate biological activities of exogenous VDR ligand without 1α-hydroxy group such as 25(OH)D3. In this study, 2α-[2-(tetrazol-2-yl)ethyl]-1α,25(OH)2D3 (AH-1) exerted much higher affinity for Vdr(R270L) in in vitro ligand binding assay than both 25(OH)D3 and 1,25(OH)2D3. A robust osteogenic activity of AH-1 was observed in Vdr(R270L) rats. Only a 40-fold lower dose of AH-1 than that of 25(OH)D3 was effective in ameliorating rickets symptoms in Vdr(R270L) rats. Therefore, AH-1 may be promising for the therapy of VDDR-II with VDR(R274L).
Collapse
|
2
|
Yasuda K, Nishikawa M, Okamoto K, Horibe K, Mano H, Yamaguchi M, Okon R, Nakagawa K, Tsugawa N, Okano T, Kawagoe F, Kittaka A, Ikushiro S, Sakaki T. Elucidation of metabolic pathways of 25-hydroxyvitamin D3 mediated by CYP24A1 and CYP3A using Cyp24a1 knockout rats generated by CRISPR/Cas9 system. J Biol Chem 2021; 296:100668. [PMID: 33865853 PMCID: PMC8134072 DOI: 10.1016/j.jbc.2021.100668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/25/2021] [Accepted: 04/13/2021] [Indexed: 01/27/2023] Open
Abstract
CYP24A1-deficient (Cyp24a1 KO) rats were generated using the CRISPER/Cas9 system to investigate CYP24A1-dependent or -independent metabolism of 25(OH)D3, the prohormone of calcitriol. Plasma 25(OH)D3 concentrations in Cyp24a1 KO rats were approximately twofold higher than in wild-type rats. Wild-type rats showed five metabolites of 25(OH)D3 in plasma following oral administration of 25(OH)D3, and these metabolites were not detected in Cyp24a1 KO rats. Among these metabolites, 25(OH)D3-26,23-lactone was identified as the second major metabolite with a significantly higher Tmax value than others. When 23S,25(OH)2D3 was administered to Cyp24a1 KO rats, neither 23,25,26(OH)3D3 nor 25(OH)D3-26,23-lactone was observed. However, when 23S,25R,26(OH)3D3 was administered to Cyp24a1 KO rats, plasma 25(OH)D3-26,23-lactone was detected. These results suggested that CYP24A1 is responsible for the conversion of 25(OH)D3 to 23,25,26(OH)3D3 via 23,25(OH)2D3, but enzyme(s) other than CYP24A1 may be involved in the conversion of 23,25,26(OH)3D3 to 25(OH)D3-26,23-lactone. Enzymatic studies using recombinant human CYP species and the inhibitory effects of ketoconazole suggested that CYP3A plays an essential role in the conversion of 23,25,26(OH)3D3 into 25(OH)D3-26,23-lactone in both rats and humans. Taken together, our data indicate that Cyp24a1 KO rats are valuable for metabolic studies of vitamin D and its analogs. In addition, long-term administration of 25(OH)D3 to Cyp24a1 KO rats at 110 μg/kg body weight/day resulted in significant weight loss and ectopic calcification. Thus, Cyp24a1 KO rats could represent an important model for studying renal diseases originating from CYP24A1 dysfunction.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Kairi Okamoto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Kyohei Horibe
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Hiroki Mano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Mana Yamaguchi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Risa Okon
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Kimie Nakagawa
- Laboratory of Hygienic Sciences, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Naoko Tsugawa
- Department of Health and Nutrition, Faculty of Health and Nutrition, Osaka Shoin Women's University, Higashi-Osaka, Japan
| | - Toshio Okano
- Department of Hygienic Sciences, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Fumihiro Kawagoe
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan.
| |
Collapse
|
3
|
Gene Expression Profiling and Biofunction Analysis of HepG2 Cells Targeted by Crocetin. Mediators Inflamm 2021; 2021:5512166. [PMID: 33867857 PMCID: PMC8035019 DOI: 10.1155/2021/5512166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Crocetin is a carotenoid extracted from Gardenia jasminoides, one of the most popular traditional Chinese medicines, which has been used in the prevention and treatment of various diseases. The present study is aimed at clarifying the effect of crocetin on gene expression profiling of HepG2 cells by RNA-sequence assay and further investigating the molecular mechanism underlying the multiple biofunctions of crocetin based on bioinformatics analysis and molecular evidence. Among a total 23K differential genes identified, crocetin treatment upregulated the signals of 491 genes (2.14% of total gene probes) and downregulated the signals of 283 genes (1.24% of total gene probes) by ≥2-fold. The Gene Ontology analysis enriched these genes mainly on cell proliferation and apoptosis (BRD4 and DAXX); lipid formation (EHMT2); cell response to growth factor stimulation (CYP24A1 and GCNT2); and growth factor binding (ABCB1 and ABCG1), metabolism, and signal transduction processes. The KEGG pathway analysis revealed that crocetin has the potential to regulate transcriptional misregulation, ABC transporters, bile secretion, alcoholism, systemic lupus erythematosus (SLE), and other pathways, of which SLE was the most significantly disturbed pathway. The PPI network was constructed by using the STRING online protein interaction database and Cytoscape software, and 21 core proteins were obtained. RT-qPCR datasets serve as the solid evidence that verified the accuracy of transcriptome sequencing results with the same change trend. This study provides first-hand data for comprehensively understanding crocetin targeting on hepatic metabolism and its multiple biofunctions.
Collapse
|
4
|
Mano H, Takano M, Ikushiro S, Kittaka A, Sakaki T. Novel biosensor using split-luciferase for detecting vitamin D receptor ligands based on the interaction between vitamin D receptor and coactivator. Biochem Biophys Res Commun 2018; 505:460-465. [PMID: 30268505 DOI: 10.1016/j.bbrc.2018.09.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 11/15/2022]
Abstract
Vitamin D receptor (VDR) ligands, such as 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] and its analogs, have been investigated for their potential clinical use in the treatment of various diseases such as type I rickets, osteoporosis, psoriasis, leukemia, and cancer. Previously, we reported a split-luciferase-based biosensor that can detect VDR ligands and assess their affinity for the ligand binding domain (LBD) of the VDR in a short time. However, a further increase in its sensitivity was required to detect plasma levels of 1α,25(OH)2D3 and its analogs. In this study, a novel type of biosensor called LXXLL + LBD was successfully developed. Here, the split luciferase forms a functional complex based on the intermolecular interaction between the LXXLL motif and the ligand-bound form of the LBD. This biosensor has an approximately 10-fold increase in the light intensity compared to the previous versions. Additionally, the binding affinity of the vitamin D analogs for the wild-type and the rickets-associated mutant R274L of VDR was evaluated.
Collapse
Affiliation(s)
- Hiroki Mano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi, Tokyo, 173-8605, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi, Tokyo, 173-8605, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|