1
|
Parrilla GE, Vander Wall R, Chitranshi N, Basavarajappa D, Gupta V, Graham SL, You Y. RXR agonist, 9-cis-13,14-dihydroretinoic acid (9CDHRA), reduces damage and protects from demyelination in transsynaptic degeneration model. Neuroscience 2024; 559:91-104. [PMID: 39173871 DOI: 10.1016/j.neuroscience.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative and demyelinating disease, such as multiple sclerosis (MS) are at the forefront of medical research and the discovery of new drugs and therapeutics. One phenomenon of degeneration seen in these diseases is transsynaptic degeneration (TSD), where damage from one axon spreads to the other axons that are connected to it synaptically. It has previously been found that demyelination occurs prior to neuronal loss in an experimental form of induced TSD. Retinoid-x receptor (RXR) agonists have been shown to promote remyelination. Therefore, this study aimed to reveal the effects of a novel endogenous RXR-γ agonist, 9-cis-13,14-dihydroretinoic acid (9CDHRA), on preventing or restoring the effects of TSD. 9CDHRA was administered to mice following optic nerve crush (ONC) procedures, and electrophysiology (visual evoked potential, VEP) and histological (immunofluorescent) assessments were performed. It was found that 9CDHRA treatment effectively delayed glial activation and reduced the presence of apoptosis at the site of injury and further anterogradely in the visual system, including the lateral geniculate nucleus (LGN) and primary visual cortex (V1). Most notably, 9CDHRA was able to maintain myelin levels following ONC, and effectively protected from demyelination. This was corroborated by VEP recordings with improved P1 latency. The promising findings regarding the injury attenuating and myelin protecting properties of 9CDHRA necessitates further investigations into the potential therapeutic uses of this compound.
Collapse
Affiliation(s)
- Gabriella E Parrilla
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia.
| | - Roshana Vander Wall
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Nitin Chitranshi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Devaraj Basavarajappa
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia; Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia; Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| |
Collapse
|
2
|
Sun H, Liu Y, Wang X, Shu L. A network pharmacology-based method to explore the therapeutic effect of honokiol on diabetes with comorbid depression in mice. Eur J Pharmacol 2024; 975:176642. [PMID: 38754538 DOI: 10.1016/j.ejphar.2024.176642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2023] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The effective treatment of diabetes with comorbid depression is a big challenge so far. Honokiol, a bioactive compound from the dietary supplement Magnolia officinalis extract, possesses multiple health benefits. The present study aims to propose a network pharmacology-based method to elucidate potential targets of honokiol in treating diabetes with comorbid depression and related mechanisms. The antidepressant-like efficacy of honokiol was evaluated in high-fat diet (HFD) induced diabetic mice using animal behavior testing, immuno-staining and western blotting assay. Through network pharmacology analysis, retinoid X receptor alpha (RXRα) and vitamin D receptor (VDR) were identified as potential targets related to diabetes and depression. The stable binding conformation between honokiol and RXR/VDR was determined by molecular docking simulation. Moreover, hononkiol effectively alleviated depression-like behaviors in HFD diabetic mice, presented anti-diabetic and anti-neuroinflammatory functions, and protected the hippocampal neuroplasticity. Importantly, honokiol could activate RXR/VDR heterodimer in vivo. The beneficial effects of honokiol on HFD mice were significantly suppressed by UVI3003 (a RXR antagonist), while enhanced by calcitriol (a VDR agonist). Additionally, the disruption of autophagy in the hippocampus of HFD mice was ameliorated by honokiol, which was attenuated by UVI3003 but strengthened by calcitriol. Taken together, the data provide new evidence that honokiol exerts the antidepressant-like effect in HFD diabetic mice via activating RXR/VDR heterodimer to restore the balance of autophagy. Our findings indicate that the RXR/VDR-mediated signaling might be a potential target for treating diabetes with comorbid depression.
Collapse
Affiliation(s)
- Haonan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yumin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuedong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Luan Shu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory of Oral Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Jiang X, Ma Y, Gong S, Zi X, Zhang D. Resveratrol Promotes Proliferation, Antioxidant Properties, and Progesterone Production in Yak ( Bos grunniens) Granulosa Cells. Animals (Basel) 2024; 14:240. [PMID: 38254409 PMCID: PMC10812796 DOI: 10.3390/ani14020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol (RES) is a class of natural polyphenolic compounds known for its strong anti-apoptotic and antioxidant properties. Granulosa cells (GCs) are one of the important components of ovarian follicles and play crucial roles in follicular development of follicles in the ovary. Here, we explored the effects of RES on the proliferation and functions of yak GCs. Firstly, we evaluated the effect of RES dose and time in culture on the viability of GCs, and then the optimum treatment protocol (10 μM RES, 36 h) was selected to analyze the effects of RES on the proliferation, cell cycle, apoptosis, malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) accumulation, lipid droplet content, ATP production, and steroidogenesis of GCs, as well as the expression of related genes. The results show that RES treatment significantly (1) increased cell viability and proliferation and inhibited cell apoptosis by upregulating BCL-2 and SIRT1 genes and downregulating BAX, CASP3, P53, and KU70 genes; (2) increased the proportion of GCs in the S phase and upregulated CCND1, PCNA, CDK4, and CDK5 genes; (3) reduced ROS accumulation and MDA content and increased GSH content, as well as upregulating the relative expression levels of CAT, SOD2, and GPX1 genes; (4) decreased lipid droplet content and increased ATP production; (5) promoted progesterone (P4) secretion and the expression of P4 synthesis-related genes (StAR, HSD3B1, and CYP11A1); and (6) inhibited E2 secretion and CYP19A1 expression. These findings suggest that RES at 10 μM increases the proliferation and antioxidant properties, inhibits apoptosis, and promotes ATP production, lipid droplet consumption, and P4 secretion of yak GCs.
Collapse
Affiliation(s)
- Xudong Jiang
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Yao Ma
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Sanni Gong
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Xiangdong Zi
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Dawei Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
4
|
Zou C, Wang L, Shu C, Tan X, Wu Z, Zou Y, Li Z, Wang G, Song Z, You F. Rxrs and their partner receptor genes inducing masculinization plausibly mediated by endocrine disruption in Paralichthys olivaceus. J Steroid Biochem Mol Biol 2023; 226:106219. [PMID: 36356854 DOI: 10.1016/j.jsbmb.2022.106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/19/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Retinoid X receptors (RXRs) can form homo- or heterodimers with orphan receptors involved in multiple intertwined signaling pathways. However, there is limited study on the formation of sex phenotypes and the regulation of steroidogenesis by RXRs in fish. Here, in Paralichthys olivaceus, we first indicated that PPARγ::RXRα was predictably a transcription factor for steroidogenesis genes, and Foxl2 and Dmrt1 were also transcription factors for rxrs and their partner receptor genes. When the flounder fry were exposed to LG100268 (LG, RXRs agonist, 50 mg/kg diet), the percentage of males increased from 50% to 71.4%. Before histological differentiation of the flounder ovary (3 cm TL) and testis (6 cm TL), the transcripts of rar β and rar γ (P < 0.05) were activated, and the steroidogenesis gene Hsd3b1 was down-regulated (P < 0.05). The ratios of testosterone (T)/17β-estradiol (E2) were all greatly increased (P < 0.05), and the ratio of 11-ketotestosterone (11-KT)/E2 was elevated at 3 cm TL. Moreover, LG was used to treat the cultured gonads in vitro (10 μM) and the fish with intraperitoneal injection in vivo (12 mg/kg body weight), respectively. LG was able to up-regulate rxr γ, rar γ, and ppar δ, and Hsd3b1 was significantly up-regulated (P < 0.05). The ratios of 11-KT/E2 in the culture medium and in the ovaries of the fish were decreased. Furthermore, the recombinant flounder Foxl2 protein was able to significantly down-regulate ppar γ (P < 0.05) and tr β (P < 0.01) in the ovaries in vitro, and the result of the Dmrt1 in the testes was opposite to that of the Foxl2, probably indicating a feedback loop between RXRs' partner receptors and Foxl2/Dmrt1. These findings introduce for the first time the mode of action of RXRs on the flounder steroidogenesis and provide important data to learn the potential function of RXRs in fish sex differentiation and the potential role of RXRs in aquatic animals in the presence of water pollutants.
Collapse
Affiliation(s)
- Congcong Zou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lijuan Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Chang Shu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xungang Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Zhihao Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yuxia Zou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Ze Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guoyu Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Zongcheng Song
- Shenghang Aquatic Science and Technology Co. Ltd., Weihai 264200, PR China
| | - Feng You
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.
| |
Collapse
|
5
|
Kawano S, Itoh K, Ishihara Y. Suppressive Effects of Docosahexaenoic Acid Intake on Increased Seizure Susceptibility after Growth Due to Febrile Seizures in Infancy. Biol Pharm Bull 2023; 46:1184-1193. [PMID: 37661397 DOI: 10.1248/bpb.b23-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/05/2023]
Abstract
Febrile seizures are seizures accompanied by a fever and frequently occur in children six months to five years of age. Febrile seizures are classified as simple or complex, and complex febrile seizures increase the risk of temporal lobe epilepsy after growth. Therefore, it is important to interfere with epileptogenesis after febrile seizures to prevent post-growth epilepsy. The present study challenged nutritional intervention using docosahexaenoic acid (DHA). Febrile seizures were induced in mice at the age of 10 d using a heat chamber, and seizure sensitivity was examined using pentylenetetrazol (PTZ) administration after growth. PTZ increased the seizure score and shortened the latency in the complex febrile seizure group compared to the control, hyperthermia and simple febrile seizure groups. Mice in the complex febrile seizure group showed abnormal electroencephalograms pre- and post-PTZ administration. Therefore, seizure susceptibility increases the episodes of complex febrile seizures. DHA supplementation after febrile seizures clearly suppressed the increased seizure susceptibility due to complex febrile seizures experienced in infancy. DHA also attenuated microglial activation after complex febrile seizures. Taken together, DHA suppressed microglial activation following complex febrile seizures, which may contribute to protecting the brain from post-growth seizures. The intake of DHA in infancy may protect children from high fever-induced developmental abnormalities.
Collapse
Affiliation(s)
- Shinji Kawano
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| |
Collapse
|
6
|
Sung C, Jiao W, Park SY, Cooper M, Bouz A, Choi D, Jung E, Kim G, Hong YK, Wong AK. Lymphatic endothelial cell RXRα is critical for 9-cis-retinoic acid-mediated lymphangiogenesis and prevention of secondary lymphedema. FASEB J 2023; 37:e22674. [PMID: 36520015 DOI: 10.1096/fj.202200146rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Secondary lymphedema is a debilitating disease characterized by abnormal soft tissue swelling and caused by lymphatic system dysfunction. Despite a high prevalence of secondary lymphedema after cancer treatments, current management is supportive and there are no approved therapeutic agents that can thwart disease progression. We have previously demonstrated that 9-cis-retinoic acid (9-cisRA) has the potential to be repurposed for lymphedema as it mitigates disease by promoting lymphangiogenesis at the site of lymphatic injury. Although the efficacy of 9-cisRA has been demonstrated in previous studies, the mechanism of action is not completely understood. In this study, we demonstrate that when RXRα is specifically deleted in lymphatic endothelial cells, 9-cisRA fails to induce lymphangiogenesis in vitro and prevent pathologic progression of postsurgical lymphedema in vivo. These findings demonstrate that downstream nuclear receptor RXRα plays a critical role in the therapeutic efficacy of 9-cisRA in postsurgical lymphedema.
Collapse
Affiliation(s)
- Cynthia Sung
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Keck School of Medicine of USC, Los Angeles, California, USA
| | - Wan Jiao
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Sun Young Park
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Michael Cooper
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Antoun Bouz
- Herbert Wertheim College of Medicine of FIU, Miami, Florida, USA
| | - Dahae Choi
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Eunson Jung
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Gene Kim
- Keck School of Medicine of USC, Los Angeles, California, USA
| | - Young Kwon Hong
- Keck School of Medicine of USC, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Alex K Wong
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| |
Collapse
|
7
|
Costa HN, Esteves AR, Empadinhas N, Cardoso SM. Parkinson's Disease: A Multisystem Disorder. Neurosci Bull 2023; 39:113-124. [PMID: 35994167 PMCID: PMC9849652 DOI: 10.1007/s12264-022-00934-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2022] [Accepted: 06/11/2022] [Indexed: 01/22/2023] Open
Abstract
The way sporadic Parkinson's disease (PD) is perceived has undergone drastic changes in recent decades. For a long time, PD was considered a brain disease characterized by motor disturbances; however, the identification of several risk factors and the hypothesis that PD has a gastrointestinal onset have shed additional light. Today, after recognition of prodromal non-motor symptoms and the pathological processes driving their evolution, there is a greater understanding of the involvement of other organ systems. For this reason, PD is increasingly seen as a multiorgan and multisystemic pathology that arises from the interaction of susceptible genetic factors with a challenging environment during aging-related decline.
Collapse
Affiliation(s)
- Helena Nunes Costa
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
8
|
Liu H, Wang H, Chen S, Liu S, Tian X, Dong Z, Xu L. iTRAQ-derived quantitative proteomics uncovers the neuroprotective property of bexarotene in a mice model of cerebral ischemia-reperfusion injury. Saudi Pharm J 2022; 30:585-594. [PMID: 35693438 PMCID: PMC9177454 DOI: 10.1016/j.jsps.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 11/03/2022] Open
Abstract
Bexarotene, a FDA-approved drug for cutaneous lymphoma, has been shown to exert brain protective effects. In previous study, we demonstrated that Bexarotene protects against cerebral ischemic stroke by suppressing the JNK/Caspase-3 signaling pathway. However, the molecular mechanisms by which Bexarotene-mediated neuroprotective are not fully understood. Based on the isobaric tags for relative and absolute quantification (iTRAQ)-derived proteomics and bioinformatics analysis, 4,454 differentially expressed proteins (DEPs) were identified in upstream of the JNK signaling pathway. Among them, 149 DEPs showed aberrant expression in the vehicle-versus Bexarotene-treated mice. DEPs were primarily enriched in the metabolism, calcium, and MAPK signaling pathways. The largest DEP increase was seen with heat shock protein HSP 70, whereas the largest DEP decrease was seen with JNK scaffold protein JIP3, both of which are involved in the MAPK network. Furthermore, we illustrated the Bexarotene obviously abolished oxygen and glucose deprivation/reperfusion (OGD/R)- induced LDH leakage, cells apoptosis, and the protein expression level of the JIP3,p-ASK1, p-JNK, and Cleaved Caspase3. Together, these results suggest a potential neuroprotective role of Bexarotene via inhibition of the JIP3/ASK1/JNK/Caspase 3 signaling pathway.
Collapse
|
9
|
Sharma S, Shen T, Chitranshi N, Gupta V, Basavarajappa D, Mirzaei M, You Y, Krezel W, Graham SL, Gupta V. Retinoid X Receptor: Cellular and Biochemical Roles of Nuclear Receptor with a Focus on Neuropathological Involvement. Mol Neurobiol 2022; 59:2027-2050. [PMID: 35015251 PMCID: PMC9015987 DOI: 10.1007/s12035-021-02709-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Retinoid X receptors (RXRs) present a subgroup of the nuclear receptor superfamily with particularly high evolutionary conservation of ligand binding domain. The receptor exists in α, β, and γ isotypes that form homo-/heterodimeric complexes with other permissive and non-permissive receptors. While research has identified the biochemical roles of several nuclear receptor family members, the roles of RXRs in various neurological disorders remain relatively under-investigated. RXR acts as ligand-regulated transcription factor, modulating the expression of genes that plays a critical role in mediating several developmental, metabolic, and biochemical processes. Cumulative evidence indicates that abnormal RXR signalling affects neuronal stress and neuroinflammatory networks in several neuropathological conditions. Protective effects of targeting RXRs through pharmacological ligands have been established in various cell and animal models of neuronal injury including Alzheimer disease, Parkinson disease, glaucoma, multiple sclerosis, and stroke. This review summarises the existing knowledge about the roles of RXR, its interacting partners, and ligands in CNS disorders. Future research will determine the importance of structural and functional heterogeneity amongst various RXR isotypes as well as elucidate functional links between RXR homo- or heterodimers and specific physiological conditions to increase drug targeting efficiency in pathological conditions.
Collapse
Affiliation(s)
- Samridhi Sharma
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Ting Shen
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Wojciech Krezel
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire, INSERM U1258, CNRS UMR 7104, Unistra, 67404, Illkirch-Graffenstaden, France
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Brann DW, Lu Y, Wang J, Sareddy GR, Pratap UP, Zhang Q, Tekmal RR, Vadlamudi RK. Neuron-Derived Estrogen-A Key Neuromodulator in Synaptic Function and Memory. Int J Mol Sci 2021; 22:ijms222413242. [PMID: 34948039 PMCID: PMC8706511 DOI: 10.3390/ijms222413242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/31/2023] Open
Abstract
In addition to being a steroid hormone, 17β-estradiol (E2) is also a neurosteroid produced in neurons in various regions of the brain of many species, including humans. Neuron-derived E2 (NDE2) is synthesized from androgen precursors via the action of the biosynthetic enzyme aromatase, which is located at synapses and in presynaptic terminals in neurons in both the male and female brain. In this review, we discuss evidence supporting a key role for NDE2 as a neuromodulator that regulates synaptic plasticity and memory. Evidence supporting an important neuromodulatory role of NDE2 in the brain has come from studies using aromatase inhibitors, aromatase overexpression in neurons, global aromatase knockout mice, and the recent development of conditional forebrain neuron-specific knockout mice. Collectively, these studies demonstrate a key role of NDE2 in the regulation of synapse and spine density, efficacy of excitatory synaptic transmission and long-term potentiation, and regulation of hippocampal-dependent recognition memory, spatial reference memory, and contextual fear memory. NDE2 is suggested to achieve these effects through estrogen receptor-mediated regulation of rapid kinase signaling and CREB-BDNF signaling pathways, which regulate actin remodeling, as well as transcription, translation, and transport of synaptic proteins critical for synaptic plasticity and function.
Collapse
Affiliation(s)
- Darrell W. Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Correspondence:
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA; (G.R.S.); (U.P.P.); (R.R.T.); (R.K.V.)
| | - Uday P. Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA; (G.R.S.); (U.P.P.); (R.R.T.); (R.K.V.)
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA;
| | - Rajeshwar R. Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA; (G.R.S.); (U.P.P.); (R.R.T.); (R.K.V.)
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA; (G.R.S.); (U.P.P.); (R.R.T.); (R.K.V.)
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Brann DW, Lu Y, Wang J, Zhang Q, Thakkar R, Sareddy GR, Pratap UP, Tekmal RR, Vadlamudi RK. Brain-derived estrogen and neural function. Neurosci Biobehav Rev 2021; 132:793-817. [PMID: 34823913 PMCID: PMC8816863 DOI: 10.1016/j.neubiorev.2021.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Although classically known as an endocrine signal produced by the ovary, 17β-estradiol (E2) is also a neurosteroid produced in neurons and astrocytes in the brain of many different species. In this review, we provide a comprehensive overview of the localization, regulation, sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of what we know regarding the functional roles of BDE2 has come from studies using specific inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key controversies and challenges in this area, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Roshni Thakkar
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA; Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
12
|
Chaudhary H, Patel J, Jain NK, Joshi R. The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis. J Ovarian Res 2021; 14:125. [PMID: 34563259 PMCID: PMC8466925 DOI: 10.1186/s13048-021-00879-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathies affecting the early reproductive age in women, whose pathophysiology perplexes many researchers till today. This syndrome is classically categorized by hyperandrogenism and/or hyperandrogenemia, menstrual and ovulatory dysfunction, bulky multi follicular ovaries on Ultrasonography (USG), and metabolic abnormalities such as hyperinsulinemia, dyslipidemia, obesity. The etiopathogenesis of PCOS is not fully elucidated, but it seems that the hypothalamus-pituitary-ovarian axis, ovarian, and/or adrenal androgen secretion may contribute to developing the syndrome. Infertility and poor reproductive health in women's lives are highly associated with elevated levels of androgens. Studies with ovarian theca cells taken from PCOS women have demonstrated increased androgen production due to augmented ovarian steroidogenesis attributed to mainly altered expression of critical enzymes (Cytochrome P450 enzymes: CYP17, CYP21, CYP19, CYP11A) in the steroid hormone biosynthesis pathway. Despite the heterogeneity of PCOS, candidate gene studies are the widely used technique to delineate the genetic variants and analyze for the correlation of androgen biosynthesis pathway and those affecting the secretion or action of insulin with PCOS etiology. Linkage and association studies have predicted the relationship between genetic variants and PCOS risk among families or populations. Several genes have been proposed as playing a role in the etiopathogenesis of PCOS, and the presence of mutations and/or polymorphisms has been discovered, which suggests that PCOS has a vital heritable component. The following review summarizes the influence of polymorphisms in crucial genes of the steroidogenesis pathway leading to intraovarian hyperandrogenism which can result in PCOS.
Collapse
Affiliation(s)
- Hiral Chaudhary
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Jalpa Patel
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Nayan K. Jain
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Rushikesh Joshi
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| |
Collapse
|
13
|
Kawano S, Itoh K, Ishihara Y. Maternal intake of docosahexaenoic acid decreased febrile seizure sensitivity by increasing estrogen synthesis in offspring. Epilepsy Behav 2021; 121:108038. [PMID: 34052639 DOI: 10.1016/j.yebeh.2021.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Febrile seizures, which are convulsion in children, are caused by an abrupt increase in body temperature. They are sometimes recurrent, and the more seizures are triggered, the higher the risk of epilepsy and psychiatric disorders increase after growing up. Prevention of febrile seizure is considered to be one of the effective countermeasures in protecting the future health of children; however, pharmacological prevention in the developmental stage is not realistic from the health aspects of the offspring. Docosahexaenoic acid (DHA) is an important nutrient especially during pregnancy and childhood and is reported to suppress several types of epilepsy. The purpose of this study was to examine the effect of DHA intake during pregnancy and infancy on febrile seizures in mice. We used a heat chamber for febrile seizure induction in offspring at the age of from 10 to 11 days old. Intake of DHA during pregnancy and infancy significantly increased the amount of DHA in the brain of offspring. Although DHA had no effect on seizure severity, DHA significantly prolonged the seizure latency and increased body temperature at which the first seizure occurred, indicating that maternal DHA intake decreases febrile seizure sensitivity. Brain estrogen levels significantly increased by DHA intake and administration of an inhibitor for cytochrome P450 aromatase, which is a rate-limiting enzyme for estrogen synthesis, clearly decreased seizure latency and body temperature at which the first seizure occurred. Taken together, DHA could reduce susceptibility to febrile seizures owing to increases in brain estrogen contents. DHA intake during pregnancy and infancy is of significance in protecting infant from seizures as well as conserving health after growth.
Collapse
Affiliation(s)
- Shinji Kawano
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan.
| |
Collapse
|
14
|
DHA and Its Metabolites Have a Protective Role against Methylmercury-Induced Neurotoxicity in Mouse Primary Neuron and SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms22063213. [PMID: 33809931 PMCID: PMC8004243 DOI: 10.3390/ijms22063213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The consumption of fish now involves a risk of methylmercury (MeHg) exposure but also provides the benefit of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) such as docosahexaenoic acid (DHA). Some epidemiological studies have suggested that the intake of DHA can alleviate the neurotoxicity of MeHg, but the underlying mechanism is not known. Herein, we observed that pretreatment with 0.1–1 µM DHA suppressed MeHg-induced cytotoxicity in human neuroblastoma (SH-SY5Y) cells and mouse primary neuronal cells. These effects of DHA were canceled in the presence of the retinoid X receptor (RXR) antagonist UVI3003. An RXR agonist, bexarotene, suppressed the cytotoxicity of MeHg. DHA also suppressed the MeHg-induced production of reactive oxygen species (ROS) via an induction of antioxidant genes (catalase and SOD1). Pretreatment with DHA did not change the incorporation of MeHg. We showed previously that in the brain, the intake of DHA increased the level of 19,20-DHDP, which is the metabolite produced by cytochrome P450 and soluble epoxide hydrolase from DHA. In the present study, we observed that 19,20-DHDP also suppressed neurotoxicity from MeHg. These results indicate that DHA and its metabolites have a protective role in MeHg-induced neurotoxicity.
Collapse
|
15
|
Ishii M, Senju A, Oguro A, Shimono M, Araki S, Kusuhara K, Itoh K, Tsuji M, Ishihara Y. Measurement of the Estradiol Concentration in Cerebrospinal Fluid from Infants and Its Correlation with Serum Estradiol and Exosomal MicroRNA-126-5p. Biol Pharm Bull 2020; 43:1966-1968. [PMID: 33268717 DOI: 10.1248/bpb.b20-00549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Estradiol has an important role in the brain, such as in neuronal development and protection, but estradiol levels in the human brain have not been well investigated. In this study, we measured the estradiol concentration in the cerebrospinal fluid (CSF) of infants to reveal the relationships between the estradiol concentrations in the serum and the CSF and further determined exosomal microRNAs in serum. Estradiol in the CSF was strongly correlated with serum estradiol and moderately correlated with miR-126-5p in the serum exosomes. This report is the first to determine the estradiol concentration in CSF from infants and showed that the levels of miR-126-5p as well as serum estradiol can be candidates to predict brain estrogen status.
Collapse
Affiliation(s)
- Masahiro Ishii
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Ayako Senju
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Masayuki Shimono
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Shunsuke Araki
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Koichi Kusuhara
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| | - Mayumi Tsuji
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| |
Collapse
|
16
|
Guo J, Liu S, Wang P, Ren H, Li Y. Characterization of VDR and CYP27B1 expression in the endometrium during the menstrual cycle before embryo transfer: implications for endometrial receptivity. Reprod Biol Endocrinol 2020; 18:24. [PMID: 32183826 PMCID: PMC7079352 DOI: 10.1186/s12958-020-00579-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/03/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Molecular analyses of vitamin D in a typical cycling endometrium has received minimal research attention in the reproductive field. This study was designed to assess how expression of the endometrial vitamin D receptor (VDR) and CYP27B1, a vitamin D metabolizing enzyme, change during the menstrual cycle in women of reproductive age. In addition, this study explores the association between expression of vitamin D-VDR system and endometrial receptivity during the implantation window. METHODS Sixteen patients underwent standardized in vitro fertilization (IVF) treatment and freeze-all techniques. Before embryo transfer, total serum 25(OH) D levels were determined through blood samples and VDR, CYP27B1, HOXA10, and CYP19 expression were determined through endometrial samples. Endometrial receptivity was also assessed using an electron microscope. RESULTS We found that VDR protein expression was significantly lower throughout the endometrial secretory phase compared to the proliferative phase, while CYP27B1 expression remained constant during the menstrual cycle. During the implantation window, ultrastructural evaluation showed that higher serum vitamin D levels were associated with more mature pinopodes; VDR and HOXA10 protein expression were substantially elevated in pregnant women compared to non-pregnant women; and VDR protein levels were positively correlated with HOXA10 levels. In addition, serum vitamin D levels were positively correlated with VDR and HOXA10 protein levels in the endometrium. CONCLUSIONS Women with increased VDR expression in the endometrium, especially during the implantation window of the menstrual cycle, were significantly more likely to be pregnant than women with decreased expression. Our results support the hypothesis that the Vitamin D-VDR system performs a role during the development of endometrial receptivity.
Collapse
Affiliation(s)
- Jing Guo
- grid.411607.5Center for Reproductive Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Workers’ stadium South Road 8, Chao-yang district, Beijing, China
| | - Shan Liu
- grid.411607.5Center for Reproductive Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Workers’ stadium South Road 8, Chao-yang district, Beijing, China
| | - Peng Wang
- grid.411607.5Center for Reproductive Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Workers’ stadium South Road 8, Chao-yang district, Beijing, China
| | - Haiying Ren
- grid.411607.5Center for Reproductive Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Workers’ stadium South Road 8, Chao-yang district, Beijing, China
| | - Yuan Li
- grid.411607.5Center for Reproductive Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Workers’ stadium South Road 8, Chao-yang district, Beijing, China
| |
Collapse
|