1
|
Filip-Psurska B, Psurski M, Anisiewicz A, Libako P, Zbrojewicz E, Maciejewska M, Chodyński M, Kutner A, Wietrzyk J. Vitamin D Compounds PRI-2191 and PRI-2205 Enhance Anastrozole Activity in Human Breast Cancer Models. Int J Mol Sci 2021; 22:ijms22052781. [PMID: 33803480 PMCID: PMC7967212 DOI: 10.3390/ijms22052781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
1,25-Dihydroxycholecalciferol, the hormonally active vitamin D3 metabolite, is known to exhibit therapeutic effects against breast cancer, mainly by lowering the expression of estrogen receptors and aromatase activity. Previously, the safety of the vitamin D active metabolite (24R)-1,24-dihydroxycholecalciferol (PRI-2191) and 1,25(OH)2D3 analog PRI-2205 was tested, and the in vitro activity of these analogs against different cancer cell lines was studied. We determined the effect of the two vitamin D compounds on anastrozole (An) activity against breast cancer based on antiproliferative activity, ELISA, flow cytometry, enzyme inhibition potency, PCR, and xenograft study. Both the vitamin D active metabolite and synthetic analog regulated the growth of not only estrogen receptor-positive cells (T47D and MCF-7, in vitro and in vivo), but also hormone-independent cancer cells such as SKBR-3 (HER-2-positive) and MDA-MB-231 (triple-negative), despite their relatively low VDR expression. Combined with An, PRI-2191 and PRI-2205 significantly inhibited the tumor growth of MCF-7 cells. Potentiation of the antitumor activity in combined treatment of MCF-7 tumor-bearing mice is related to the reduced activity of aromatase by both An (enzyme inhibition) and vitamin D compounds (switched off/decreased aromatase gene expression, decreased expression of other genes related to estrogen signaling) and by regulation of the expression of the estrogen receptor ERα and VDR.
Collapse
Affiliation(s)
- Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigl, 53-114 Wroclaw, Poland; (M.P.); (A.A.); (P.L.); (E.Z.); (M.M.); (J.W.)
- Correspondence:
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigl, 53-114 Wroclaw, Poland; (M.P.); (A.A.); (P.L.); (E.Z.); (M.M.); (J.W.)
| | - Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigl, 53-114 Wroclaw, Poland; (M.P.); (A.A.); (P.L.); (E.Z.); (M.M.); (J.W.)
| | - Patrycja Libako
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigl, 53-114 Wroclaw, Poland; (M.P.); (A.A.); (P.L.); (E.Z.); (M.M.); (J.W.)
| | - Ewa Zbrojewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigl, 53-114 Wroclaw, Poland; (M.P.); (A.A.); (P.L.); (E.Z.); (M.M.); (J.W.)
| | - Magdalena Maciejewska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigl, 53-114 Wroclaw, Poland; (M.P.); (A.A.); (P.L.); (E.Z.); (M.M.); (J.W.)
| | - Michał Chodyński
- Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera, 01-793 Warsaw, Poland;
| | - Andrzej Kutner
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland;
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigl, 53-114 Wroclaw, Poland; (M.P.); (A.A.); (P.L.); (E.Z.); (M.M.); (J.W.)
| |
Collapse
|
2
|
Liu J, Zhao G, Liu XL, Zhang G, Zhao SQ, Zhang SL, Luo LH, Yin DC, Zhang CY. Progress of non-coding RNAs in triple-negative breast cancer. Life Sci 2021; 272:119238. [PMID: 33600860 DOI: 10.1016/j.lfs.2021.119238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) include miRNA, lncRNA, and circRNA. NcRNAs are involved in multiple biological processes, including chromatin remodeling, signal transduction, post-transcriptional modification, cell autophagy, carbohydrate metabolism, and cell cycle regulation. Triple negative breast cancer (TNBC) is notorious for high invasiveness and metastasis, poor prognosis, and high mortality, and it is the most malignant breast cancer, while the effective targets for TNBC treatment are still lacking. NcRNAs act as oncogenes or suppressor genes, as well as promote or inhibit the occurrence and development of TNBC. Here, we reviewed some important miRNAs, lncRNAs, circRNAs, their target(s) and molecular mechanisms in TNBC. It is benefited to understand the occurrence and development of TNBC, further some ncRNAs might be potential targets for TNBC treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Gang Zhao
- Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Xin-Li Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Shi-Qi Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Shi-Long Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Li-Heng Luo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| |
Collapse
|
3
|
Li Y, Liu S, Cheng H, Chen X, Shen X, Cai Y. Dynamic transcriptome response in Meretrix meretrix to Aroclor 1254 exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111485. [PMID: 33254386 DOI: 10.1016/j.ecoenv.2020.111485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) are well-known persistent organic pollutants; they have toxic effects on the immune system, reproductive system, and endocrine system by changing the metabolism of the body. To elucidate the underlying molecular mechanism, the clam Meretrix meretrix was exposed to 10 and 1000 ng/L Aroclor 1254 and natural seawater (control). Samples from clams exposed to natural seawater and those exposed to Aroclor 1254 for 1 and 3 days were individually collected for transcriptome analysis. After assembly, more than 535,157 transcripts with a mean length of 949 bp and an N50 length of 1279 bp were obtained; a final set of 177,142 unigenes was generated. In the present study, 5101 differentially expressed genes were identified. The differentially expressed genes were related to detoxification metabolism, oxidative stress, immune response, and endocrine system disruption. Of these genes, under the Aroclor 1254 exposure, cytochrome P450 20A1 (2.06-4.46 folds), glutathione S-transferase (2.25-3.80 folds), multidrug resistance-associated protein 1-like (1.49-2.92 folds), peroxidase-like protein (1.33-4.26 folds), lysozyme (1.61-2.05 folds), bcl-2 like 1 protein (1.14-2.29 folds) and vitellogenin (1.09-1.19 folds) showed been significantly induced expressed. At the same time, some genes were down regulated, including cytochrome P450 2J5 (-1.20 ~ -2.86 folds), cytochrome P450 3A24 (-1.40 ~ -4.08 folds), C1q (-1.27 ~ -1.66 folds), Sulfotransferase (-1.51 ~ -1.84 folds), monocarboxylate transporter 10 (-1.30 ~ -4.70 folds), 3-beta hydroxysteroid dehydrogenase (-1.43 ~ -2.81 folds) and beta-galactosidase (-1.23 ~ -2.23 folds). Furthermore, it showed that the expression levels of CYP2J5, glutathione S-transferase, 3-beta hydroxysteroid dehydrogenase and beta-galactosidase had time responses and dose responses. The present study provided insights into the toxic effects of Aroclor 1254 exposure in M. meretrix.
Collapse
Affiliation(s)
- Yongqi Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shishi Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yuefeng Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
4
|
Audet-Walsh É, Wang XQ, Lin SX. Using Omics to better understand steroid biosynthesis, metabolism, and functions. J Steroid Biochem Mol Biol 2020; 202:105686. [PMID: 32437965 DOI: 10.1016/j.jsbmb.2020.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Étienne Audet-Walsh
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada; Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Centre de recherche sur le cancer (CRC), Université Laval, Québec City, QC, Canada.
| | - Xiao Qiang Wang
- Department of Pathology, Peking University Third Hospital, Haidian District, 100091 Beijing, China
| | - Sheng-Xiang Lin
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada; Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Centre de recherche sur le cancer (CRC), Université Laval, Québec City, QC, Canada.
| |
Collapse
|