1
|
Liu W, Wang H, Mu Q, Gong T. Taste receptor T1R3 regulates testosterone synthesis via the cAMP-PKA-SP1 pathway in testicular Leydig cells. Theriogenology 2025; 231:210-221. [PMID: 39476553 DOI: 10.1016/j.theriogenology.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Taste receptor type 1 subunit 3 (T1R3) is a G protein-coupled receptor encoded by the TAS1R3 gene that can be specifically activated by certain sweeteners or umami agents for sweet/umami recognition. T1R3 is a potential target for regulating male reproduction. However, studies on the impact of non-nutritive sweeteners on reproduction are limited. In the present study, we evaluated the impact of the non-nutritive sweeteners (saccharin sodium, sucralose and acesulfame-K) on testosterone synthesis in testicular Leydig cells of Xiang pigs by comparing the relative abundance of mRNA transcripts and protein expression of T1R3, steroidogenic related factors, and intracellular cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), as well as testosterone levels using Western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). To clarify the specific mechanism, a dual luciferase assay was used to uncover the relationship between the transcription factors and steroidogenic enzyme. The acute intratesticular injection of a typical non-nutritive sweeteners was conducted to verify this impact in mouse. The results showed that saccharin sodium not only enhanced T1R3 expression in Leydig cells of Xiang pigs, but also caused significant increases in testosterone, cAMP, PKA, phosphorylation of specificity protein 1 (p-SP1), total protein of specificity protein 1 (SP1), steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD1) (P < 0.05). Similarly, treatment of Leydig cells with sucralose and acesulfame-K also increased testosterone level, protein expression of T1R3, 17-α-hydroxylase/17, 20-lyase (CYP17A1), and 3β-HSD1 (P < 0.05). Treatment with SQ22536 (an adenylate cyclas inhibitor) or H89 (a PKA inhibitor) significantly reduced saccharin sodium-induced protein levels of p-SP1, StAR, CYP17A1, and 3β-HSD1 (P < 0.05). In addition, a dual luciferase assay further demonstrated that SP1 significantly increased the promoter activity of CYP17A1 (P < 0.05). When mouse testes were injected with saccharin sodium, T1R3, p-SP1, CYP17A1, and 3β-HSD1 were upregulated, leading to a significant testicular increase in testosterone and cAMP levels (P < 0.05). These results suggest a mechanism by which the taste receptor T1R3 regulates testosterone production, and this mechanism may be linked to the cAMP-PKA pathway. Understanding the interrelationship between T1R3 and the cAMP-PKA-SP1 pathway contributes to clarify the regulatory mechanisms of male reproduction.
Collapse
Affiliation(s)
- Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Han Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Qi Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Tirpak F, Hamilton LE, Schnabel RD, Sutovsky P. Biomarker-based high-throughput sperm phenotyping: Andrology in the age of precision medicine and agriculture. Anim Reprod Sci 2024; 271:107636. [PMID: 39522272 DOI: 10.1016/j.anireprosci.2024.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Reproductive efficiency is crucial for animal agriculture. This economically important aspect can be influenced by environmental burdens, nutritional imbalance, and gonadal or gametic malformations of genetic origin. Successful implementation of genomic-driven selective breeding in cattle depends on the reproductive performance of artificial insemination (AI) sires with valuable genomic production traits. Reproduction is traditionally viewed as a complex set of polygenic traits that are negatively impacted by using a small number of often closely related sires selected for AI due to their superior genetics. Despite recent progress, it remains difficult to define relationships between sire genome and variation in sperm phenotypes, even though several types of heritable, non-compensable sperm defects have been identified. In this review, we discuss the concept of sperm quality biomarker discovery and genomics of male fertility. We also outline a multidisciplinary genome-to-phenome approach for investigating heritable mutations and their impacts on bull fertility, sperm phenotypes and paternal contributions to early pregnancy. High-precision phenotyping requires novel, state-of-the-art instrumentation for sperm quality evaluation and development of new biomarkers of sperm quality in farm animals, with potential for incorporation into andrology-specific machine learning protocols and translation to human andrology. We conclude that reproduction is a complex phenotype that can be deciphered and explored for more precise male fertility evaluation and higher reproductive efficiency.
Collapse
Affiliation(s)
- Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA; Genetics Area Program, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Chen J, He Y, Chen L, Wu T, Yang G, Luo H, Hu S, Yin S, Qian Y, Miao H, Li N, Miao C, Feng R. Differential alternative splicing landscape identifies potentially functional RNA binding proteins in early embryonic development in mammals. iScience 2024; 27:109104. [PMID: 38433915 PMCID: PMC10904927 DOI: 10.1016/j.isci.2024.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/16/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Alternative splicing (AS) as one of the important post-transcriptional regulatory mechanisms has been poorly studied during embryogenesis. In this study, we comprehensively collected and analyzed the transcriptome data of early embryos from human and mouse. We found that AS plays an important role in this process and predicted candidate RNA binding protein (RBP) regulators that are associated with reproductive development. The predicted RBPs such as EIF4A3, MAK16, SRSF2, and UTP23 were found to be associated with reproductive disorders. By Smart-seq2 sequencing analysis, we identified 5445 aberrant alternative splicing events in Eif4a3-knockdown embryos. These events were preferentially associated with RNA processing. In conclusion, our work on the landscape and potential function of alternative splicing events will boost further investigation of detailed mechanisms and key factors regulating mammalian early embryo development and promote the inspiration of pharmaceutical approaches for disorders in this crucial biology process.
Collapse
Affiliation(s)
- Jianhua Chen
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yanni He
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Liangliang Chen
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tian Wu
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guangping Yang
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hui Luo
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Saifei Hu
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Siyue Yin
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yun Qian
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Hui Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China
| | - Na Li
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China
| | - Congxiu Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China
| | - Ruizhi Feng
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
4
|
Yang Y, Hui Y, Guo Z, Song X, Zhu H, Pan C, Lan X. Investigation of the association between goat DNMT3B gene polymorphism and growth traits. Anim Biotechnol 2023; 34:2492-2498. [PMID: 35895437 DOI: 10.1080/10495398.2022.2101115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The DNA methyltransferase 3 beta (DNMT3B) gene is key for DNA methylation and has been well recognized in regulating growth and development. A previous observation indicated that an 11-bp indel of DNMT3B affected the reproductive traits in goats, yet the effect of this polymorphism on body measurement traits in goats has not been reported. This study aims to investigate the associations between DNMT3B gene polymorphism and goat growth traits. We investigated this 11-bp indel in 2184 goats and three genotypes have been found in Shaanbei white cashmere goat (SBWC): insertion/insertion (II), deletion/deletion (DD) and insertion/deletion (ID). Only ID and DD genotypes were detected in Nubian goats and Guizhou heima goat (GZHM). The allele frequencies analyzed revealed that the 'D' allele frequencies were higher in all three goat breeds. Further association analysis demonstrated that this indel is markedly associated with the cannon circumference (CC) and cannon circumference index (CCI) of SBWC and cannon circumference (CC) of Nubian goats (p < .05). The CC and CCI are essential indicators to measure the growth status of goats. In summary, our study sheds some light on the potential impact of the 11-bp indel polymorphism of the DNMT3B gene on improving the growth traits in goats.
Collapse
Affiliation(s)
- Yuta Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yiqing Hui
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhengang Guo
- Bijie Animal Husbandry and Veterinary Science Research Institute, Bijie, Guizhou, China
| | - Xiaoyue Song
- College of Life Sciences, Yulin University, Yulin, China
| | - Haijing Zhu
- College of Life Sciences, Yulin University, Yulin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Wang W, Mu Q, Feng X, Liu W, Xu H, Chen X, Shi F, Gong T. Sweet Taste Receptor T1R3 Expressed in Leydig Cells Is Closely Related to Homeostasis of the Steroid Hormone Metabolism Profile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7791-7802. [PMID: 37186581 DOI: 10.1021/acs.jafc.3c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Taste receptor type 1 subunit 3 (T1R3) is initially expressed in mammal tongue for recognition and response of sweet/umami tastants and is critical to nutrient absorption, even endocrine. In this study, down-regulation of related steroidogenic enzymes such as StAR, 3β-HSD, CYP17A1, and 17β-HSD with the decrease of T1R3 expression was found in Leydig cells treated by a T1R3 inhibitor (lactisole). The abundances of progesterone, 17a-hydroxyprogesterone, androstenedione, testosterone, and deoxycorticosterone were down-regulated by 2.3, 3.5, 1.4, 1.6, and 2.2 times, respectively, after T1R3 inhibition. In addition, opposite results were found in saccharin sodium treatment. T1R3 activation contributed to intracellular cyclic adenosine monophosphate (cAMP) accumulation (14.41 ± 0.58 vs 20.21 ± 0.65) and increased testosterone (20.31 ± 3.49 vs 50.01 ± 7.44) and steroidogenic metabolite levels. Coadministration of human chorionic gonadotropin and saccharin sodium resulted in elevating the testosterone and cAMP levels and enhancing the expression levels of steroidogenic-related factors. Similarly, intratesticular injection of lactisole and saccharin sodium further confirmed that T1R3 inhibition/activation affected the expression of related steroidogenic enzymes and the testosterone levels in mice. The above findings suggest that T1R3 plays a role in testicular steroidogenesis.
Collapse
Affiliation(s)
- Weiyong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qi Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Xianzhou Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
6
|
Zheng X, Chen J, Kang L, Wei Y, Wu Y, Hong Y, Wang X, Li D, Shen L, Long C, Wei G, Wu S. Prepubertal exposure to copper oxide nanoparticles induces Leydig cell injury with steroidogenesis disorders in mouse testes. Biochem Biophys Res Commun 2023; 654:62-72. [PMID: 36889036 DOI: 10.1016/j.bbrc.2023.02.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Copper oxide nanoparticles (CuONPs) are metallic multifunctional nanoparticles with good conductive, catalytic and antibacterial characteristics that have shown to cause reproductive dysfunction. However, the toxic effect and potential mechanisms of prepubertal exposure to CuONPs on male testicular development have not been clarified. In this study, healthy male C57BL/6 mice received 0, 10, and 25 mg/kg/d CuONPs by oral gavage for 2 weeks (postnatal day 22-35). The testicular weight was decreased, testicular histology was disturbed and the number of Leydig cells was reduced in all CuONPs-exposure groups. Transcriptome profiling suggested steroidogenesis was impaired after exposure to CuONPs. The steroidogenesis-related genes mRNA expression level, concentration of serum steroids hormones and the HSD17B3-, STAR- and CYP11A1-positive Leydig cell numbers were dramatically reduced. In vitro, we exposed TM3 Leydig cells to CuONPs. Bioinformatic analysis, flow cytometry analysis and western blotting analysis confirmed that CuONPs can dramatically reduce Leydig cells viability, enhance apoptosis, trigger cell cycle arrest and reduce cell testosterone levels. U0126 (ERK1/2 inhibitor) significantly reversed TM3 Leydig cells injury and testosterone level decrease induced by CuONPs. These outcomes indicate that CuONPs exposure activates the ERK1/2 signaling pathway, which further promotes apoptosis and cell cycle arrest in TM3 Leydig cells, and ultimately leads to Leydig cells injury and steroidogenesis disorders.
Collapse
Affiliation(s)
- Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jiadong Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Lian Kang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Xia Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Dinggang Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Chunlan Long
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
7
|
Liu W, Gong T, Xu Y. The co-expression of steroidogenic enzymes with T1R3 during testicular development in the Congjiang Xiang pig. Anim Reprod Sci 2023; 251:107216. [PMID: 37011421 DOI: 10.1016/j.anireprosci.2023.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Testosterone is a key crucial hormone synthesized by steroidogenic enzymes that initiate and maintain spermatogenesis and secondary sexual characteristics in adult males. The taste receptor family 1 subunit 3 (T1R3) is reported to be associated with male reproduction. T1R3 can regulate the expressions of steroidogenic enzymes and affect testosterone synthesis. In this study, we addressed the question of whether the expression of steroid synthase was associated with T1R3 and its downstream-tasting molecules during testicular development. The results showed an overall upward trend in testosterone and morphological development in testes from Congjiang Xiang pigs from pre-puberty to sexual maturity. Gene expression levels of testicular steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450c17 (CYP17A1) and 17β-hydroxysteroid dehydrogenase (17β-HSD) were increased from pre-puberty to sexual maturity. Protein expression changes of CYP17A1 and 3β-HSD were consistent with mRNA. The relative abundance of tasting molecules (TAS1R3, phospholipase Cβ2, PLCβ2) was increased from pre-puberty to puberty (P < 0.05), with no further significant changes in expression from puberty to sexual maturity. Steroidogenic enzymes (3β-HSD and CYP17A1) were strongly detected in Leydig cells from pre-puberty to sexual maturity, while tasting molecules were localized in Leydig cells and spermatogenic cells. Correlation analysis showed that the genes mentioned above (except for PLCβ2) were positively correlated with testosterone levels and morphological characteristics of the testes at different developmental stages of Congjiang Xiang pigs. These results suggest that steroidogenic enzymes regulate testosterone synthesis and testicular development, and that taste receptor T1R3, but not PLCβ2, may associate with this process.
Collapse
Affiliation(s)
- Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China.
| | - Yongjian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| |
Collapse
|
8
|
Xu J, Jiang AM, Zhang C, Zheng Y, Zhang T, Zhou L. Potential of eight mutations for marker-assisted breeding in Chinese Lulai black pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1139/cjas-2021-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular marker-assisted selection (MAS) provides an efficient tool for pig breeding. In this study, according to the literature, we selected eight effective or causal mutations from eight functional genes, including five causal mutations in PHKG1 (rs330928088), MUC13 (rs319699771), IGF2 (g.3072G>A), VRTN (g.20311_20312ins291) and MYH3 (XM_013981330.2:g.-1805_-1810del) genes, and three effective mutations in LIPE (rs328830166), LEPR (rs45435518) and MC4R (rs81219178) genes, to investigate the potential breeding effect of them in 418 Lulai pigs. The linear model was used to analyze the association between mutations and intramuscular fat (IMF) content, average backfat thickness (ABT) and muscle moisture percent (MMP). The results revealed that among the four effective mutations, only the mutation in the LEPR gene, which affect IMF deposition, was significantly associated with IMF content. However, the other molecular markers were not significantly associated with the affected traits reported in previous studies, and these mutations are ineffective for MAS in the Lulai black pig population. Therefore, causal mutations in PHKG1, IGF2 and VRTN genes, and an effective mutation in LEPR gene could be used as effective breeding makers for MAS in Lulai pigs. These results can provide helpful information for further breeding in Lulai black pigs.
Collapse
Affiliation(s)
- Jing Xu
- Qingdao Agricultural University, 98431, Qingdao, China, 266109
| | - Ai mei Jiang
- Jiaozhou City Bureau of Agriculture and Rural Affairs, Qingdao, China
| | | | | | - Tingrong Zhang
- Qingdao Agricultural University, 98431, Qingdao, China, 266109
| | - Lisheng Zhou
- Qingdao Agricultural University, 98431, Qingdao, China, 266109
| |
Collapse
|
9
|
Kang Z, Bai Y, Lan X, Zhao H. Goat AKAP12: Indel Mutation Detection, Association Analysis With Litter Size and Alternative Splicing Variant Expression. Front Genet 2021; 12:648256. [PMID: 34093646 PMCID: PMC8176285 DOI: 10.3389/fgene.2021.648256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
A-kinase anchoring protein 12 (AKAP12) plays key roles in male germ cells and female ovarian granulosa cells, whereas its influence on livestock litter size remains unclear. Herein we detected the genetic variants of AKAP12 gene and their effects on litter size as well as alternative splicing variants expression in Shaanbei white cashmere (SBWC) goats, aiming at exploring theoretical basis for goat molecular breeding. We identified two Insertion/deletions (Indels) (7- and 13-bp) within the AKAP12 gene. Statistical analyses demonstrated that the 13-bp indel mutation in the 3′ UTR was significantly associated with litter size (n = 1,019), and the carriers with DD genotypes presented lower litter sizes compared with other carriers (P < 0.01). Bioinformatics analysis predicted that this 13-bp deletion sequence could bind to the seed region of miR-181, which has been documented to suppress porcine reproductive and respiratory syndrome virus (PRRSV) infection by targeting PRRSV receptor CD163 and affect the pig litter size. Therefore, luciferase assay for this 13-bp indel binding with miRNA-181 was performed, and the luciferase activity of pcDNA-miR-181-13bp-Deletion-allele vector was significantly lower than that of the pcDNA-miR-181-13bp-Insertion-allele vector (P < 0.05), suggesting the reduced binding capability with miR-181 in DD genotype. Given that alternative spliced variants and their expression considerably account for the Indel genetic effects on phenotypic traits, we therefore detected the expression of the alternative spliced variants in different tissues and identified that AKAP12-AS2 exhibited the highest expression levels in testis tissues. Interestingly, the AKAP12-AS2 expression levels of homozygote DD carriers were significantly lower than that of individuals with heterozygote ID, in both testis and ovarian tissues (P < 0.05), which is consistent with the effect of the 13-bp deletion on the reduced litter size. Taken together, our results here suggest that this 13-bp indel mutation within goat AKAP12 might be utilized as a novel molecular marker for improving litter size in goat breeding.
Collapse
Affiliation(s)
- Zihong Kang
- School of Life Sciences, Lanzhou University, Lanzhou, China.,College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, China
| | - Yangyang Bai
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, China
| | - Haiyu Zhao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Li J, Zhang S, Shen C, Niu Z, Yang H, Zhang K, Liu Z, Wang Y, Lan X. Indel mutations within the bovine HSD17B3 gene are significantly associated with ovary morphological traits and mature follicle number. J Steroid Biochem Mol Biol 2021; 209:105833. [PMID: 33524543 DOI: 10.1016/j.jsbmb.2021.105833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022]
Abstract
Given the intensive selection for increased milk production, it is imperative that the problem of declining fertility in dairy cows be reversed. In female mammals their reproductive traits and functioning is controlled by a finely tuned process balancing estrogens and androgens, in which androgens (e.g., testosterone) as a precursor substance can participate in estrogen synthesis by activating 17β-hydroxysteroid dehydrogenase (17betaHSD). Being a key catalyst for testosterone synthesis, we hypothesized HSD17B3 gene is involved in the ovary's development and thereby capable of influencing cows' fecundity. Herein, to investigate the relationship between polymorphisms of the HSD17B3 gene and cow fertility, we characterized three insertion/deletion (indels) polymorphisms of this gene in 1110 healthy bovine ovaries. Their respective minimum allelic frequency (MAF) ranged from 0.180 to 0.482. For the ovary morphological traits, correlations revealed that both P1-D15-bp and P4-D19-bp demonstrated significant associations with ovarian height (P = 0.007 and 0.004, respectively), while P5-I5-bp was found to be significantly associated with the ovarian weight (P = 0.024). For ovarian volume, a significant correlation was uncovered between it and both polymorphisms of P4-D19-bp (P = 0.036) and P5-I5-bp (P = 0.045). Cows with either the DD genotype of P4-D19-bp or P5-I5-bp tended to have greater ovarian volume, a result consistent with their relationship to ovarian weight (P5-I5-bp) or height (P4-D19-bp). For the mature follicle traits, polymorphisms of P4-D19-bp were found significantly associated with the number of mature follicles (P = 0.045). Furthermore, expression levels of HSD17B3 differed significantly between the maximal and minimum groups of ovarian weight or volume, and the transcription factors GATA-1 and USF were predicted to bind P1-D15-bp and P4-D19-bp, respectively. This suggested the detected intron mutations could affect HSD17B3's transcription by regulating the binding of transcription factors, thereby affecting ovarian weight and other reproductive traits. As a potential effective molecular marker loci significantly related to traits of ovary and follicle, these three indels could be used in practical molecular marker-assisted selection (MAS) breeding programs, to optimize female fertility and enhance economic efficiency in the dairy cow industry.
Collapse
Affiliation(s)
- Jie Li
- Animal Genome and Gene Function Laboratory, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, PR China.
| | - Shaoli Zhang
- Animal Genome and Gene Function Laboratory, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, PR China.
| | - Chenglong Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China.
| | - Zhihan Niu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China.
| | - Han Yang
- Animal Genome and Gene Function Laboratory, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, PR China.
| | - Kaijuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China.
| | - Zhengqing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China.
| | - Xianyong Lan
- Animal Genome and Gene Function Laboratory, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
11
|
Correlation Networks Provide New Insights into the Architecture of Testicular Steroid Pathways in Pigs. Genes (Basel) 2021; 12:genes12040551. [PMID: 33918852 PMCID: PMC8069258 DOI: 10.3390/genes12040551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Steroid metabolism is a fundamental process in the porcine testis to provide testosterone but also estrogens and androstenone, which are essential for the physiology of the boar. This study concerns boars at an early stage of puberty. Using a RT-qPCR approach, we showed that the transcriptional activities of several genes providing key enzymes involved in this metabolism (such as CYP11A1) are correlated. Surprisingly, HSD17B3, a key gene for testosterone production, was absent from this group. An additional weighted gene co-expression network analysis was performed on two large sets of mRNA-seq to identify co-expression modules. Of these modules, two containing either CYP11A1 or HSD17B3 were further analyzed. This comprehensive correlation meta-analysis identified a group of 85 genes with CYP11A1 as hub gene, but did not allow the characterization of a robust correlation network around HSD17B3. As the CYP11A1-group includes most of the genes involved in steroid synthesis pathways (including LHCGR encoding for the LH receptor), it may control the synthesis of most of the testicular steroids. The independent expression of HSD17B3 probably allows part of the production of testosterone to escape this control. This CYP11A1-group contained also INSL3 and AGT genes encoding a peptide hormone and an angiotensin peptide precursor, respectively.
Collapse
|
12
|
Zhang Z, Tang J, He X, Di R, Zhang X, Zhang J, Hu W, Chu M. Identification and Characterization of Hypothalamic Alternative Splicing Events and Variants in Ovine Fecundity-Related Genes. Animals (Basel) 2020; 10:ani10112111. [PMID: 33203033 PMCID: PMC7698220 DOI: 10.3390/ani10112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Previous studies revealed that alternative splicing (AS) events and gene variants played key roles in reproduction. However, their location and distribution in hypothalamic fecundity-related genes in sheep without the FecB mutation remain largely unknown. In this study, we performed a correlation analysis of transcriptomics and proteomics, and the results suggested several differentially expressed genes (DEGs)/differentially expressed proteins (DEPs), including galectin 3 (LGALS3), aspartoacylase (ASPA) and transthyretin (TTR), could be candidate genes influencing ovine litter size. Further analysis suggested that AS events, single nucleotide polymorphisms (SNPs) and microRNA (miRNA)-binding sites existed in key DEGs/DEPs, such as ASPA and TTR. This study provides a new insight into ovine and even other mammalian reproduction. Abstract Previous studies revealed that alternative splicing (AS) events and gene variants played key roles in reproduction; however, their location and distribution in hypothalamic fecundity-related genes in sheep without the FecB mutation remain largely unknown. Therefore, in this study, we described the hypothalamic AS events and variants in differentially expressed genes (DEGs) in Small Tail Han sheep without the FecB mutation at polytocous sheep in the follicular phase vs. monotocous sheep in the follicular phase (PF vs. MF) and polytocous sheep in the luteal phase vs. monotocous sheep in the luteal phase (PL vs. ML) via an RNA-seq study for the first time. We found 39 DEGs with AS events (AS DEGs) in PF vs. MF, while 42 AS DEGs were identified in PL vs. ML. No DEGs with single nucleotide polymorphisms (SNPs) were observed in PF vs. MF, but five were identified in PL vs. ML. We also performed a correlation analysis of transcriptomics and proteomics, and the results suggested several key DEGs/differentially expressed proteins (DEPs), such as galectin 3 (LGALS3) in PF vs. MF and aspartoacylase (ASPA) and transthyretin (TTR) in PL vs. ML, could be candidate genes influencing ovine litter size. In addition, further analyses suggested that AS events, SNPs and miRNA-binding sites existed in key DEGs/DEPs, such as ASPA and TTR. All in all, this study provides a new insight into ovine and even other mammalian reproduction.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-010-6281-6002 (W.H.); +86-010-6281-9850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-010-6281-6002 (W.H.); +86-010-6281-9850 (M.C.)
| |
Collapse
|
13
|
Zhang X, Zhang S, Tang Q, Jiang E, Wang K, Lan X, Pan C. Goat sperm associated antigen 17 protein gene (SPAG17): Small and large fragment genetic variation detection, association analysis, and mRNA expression in gonads. Genomics 2020; 112:5115-5121. [PMID: 32949683 DOI: 10.1016/j.ygeno.2020.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Transcriptome sequencing analyses have suggested that sperm associated antigen 17 protein gene (SPAG17) may play important regulating roles in litter size. In this study, the expression profiles and genetic variations of the SPAG17 were studied in Shaanbei White Cashmere (SBWC) goats (n=1567). SPAG17 was highly expressed in testis and ovary of SBWC goats. At different developmental stages, it also continued to be highly expressed in testis. In addition, two variations of SPAG17, one indel locus and one copy number variation locus, were significantly associated with first-born litter size. Joint analysis results suggested that two polymorphic loci of the SPAG17 gene may regulate host gene expression in goat ovary and testis. Overall, the results indicated the important role of SPAG17 in the reproductive process of goats.
Collapse
Affiliation(s)
- Xuelian Zhang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China
| | - Qi Tang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China
| | - Enhui Jiang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China
| | - Ke Wang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China.
| |
Collapse
|
14
|
Yang Y, Hu H, Mao C, Jiang F, Lu X, Han X, Hao K, Lan X, Zhang Q, Pan C. Detection of the 23-bp nucleotide sequence mutation in retinoid acid receptor related orphan receptor alpha (RORA) gene and its effect on sheep litter size. Anim Biotechnol 2020; 33:70-78. [PMID: 32731793 DOI: 10.1080/10495398.2020.1770273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinoid acid receptor related orphan receptor alpha (RORA) transcribes steroid-related genes to regulate estrogen synthesis. As an important reproductive trait, litter size relates to estrogen synthesis. Therefore, it is important to investigate the association between RORA gene and sheep litter size. In this study, one 23-bp nucleotide sequence mutation was identified in intron 1 of RORA gene in 532 female Australian White Sheep. Moreover, the polymorphic information content (PIC) values of this locus was 0.219. The litter size of ID genotype was significantly better than II genotype and DD genotype in the second born litter size (p < 0.05). This loci was related to third born litter size and the ID is the dominant genotype (p < 0.05). The association between combined genotypes and average litter size showed that sheep with heterozygote (ID) genotypes had larger lamb than homozygous (DD and II) genotypes. To sum, this study provided theoretical references for the comprehensively research of the function of RORA gene and the breeding of Australian White Sheep. The 23-bp indel variants could be considered as molecular markers for the second and third born litter size of sheep for MAS breeding.
Collapse
Affiliation(s)
- Yuta Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huina Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cui Mao
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - Fugui Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - Xiaofang Lu
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Xufei Han
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Kunjie Hao
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Ju X, Huang X, Zhang M, Lan X, Wang D, Wei C, Jiang H. Effects of eight InDel variants in FHIT on milk traits in Xinjiang brown cattle. Anim Biotechnol 2020; 32:486-494. [PMID: 32401148 DOI: 10.1080/10495398.2020.1724124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In our previous genome-wide association study (GWAS), we identified the fragile histidine triad diadenosine triphosphatase (FHIT) gene in Xinjiang brown cattle (XJBC) as a candidate gene associated with cattle productive traits, with potential application in mark-assisted selection (MAS) in cattle breeding. FHIT is a prototype of a class of tumor suppressor genes that contain genomic loci mapped to common fragile loci. Here, 388 healthy and unrelated XJBC were selected to identify insertion/deletion (InDel) variants in the bovine FHIT and assess their effects on milk traits. Eight of the thirteen InDel loci were found to be polymorphic in FHIT. The polymorphism information content of the eight loci ranged from 0.061 to 0.375. The correlation analysis showed that all the new InDel variants were significantly related to six different milk traits (p < 0.05). The following variants presented a significant relationship with productive traits: P2-23bp with the 305 milk yield (p = 0.005) in the sixth parity; P3-24bp with the milk fat yield (p = 0.009) in the third parity; P5-21bp with the somatic cell score (p = 0.001) in the first parity and with the milk protein percentage (p = 0.002) in the sixth parity; and P7-26bp with the somatic cell score (p = 0.003) in the sixth parity. These findings will help evaluate InDel genotypes, within and between cattle breeds and identify potential target loci to accelerate progress in MAS in cattle breeding.
Collapse
Affiliation(s)
- Xing Ju
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xixia Huang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Menghua Zhang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Wang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chen Wei
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hui Jiang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|