1
|
Ionescu CM, Jones MA, Wagle SR, Kovacevic B, Foster T, Mikov M, Mooranian A, Al-Salami H. Bile Acid Application in Cell-Targeting for Molecular Receptors in Relation to Hearing: A Comprehensive Review. Curr Drug Targets 2024; 25:158-170. [PMID: 38192136 DOI: 10.2174/0113894501278292231223035733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Bile acids play important roles in the human body, and changes in their pool can be used as markers for various liver pathologies. In addition to their functional effects in modulating inflammatory responses and cellular survivability, the unconjugated or conjugated, secondary, or primary nature of bile acids accounts for their various ligand effects. The common hydrophilic bile acids have been used successfully as local treatment to resolve drug-induced cell damage or to ameliorate hearing loss. From various literature references, bile acids show concentration and tissue-dependent effects. Some hydrophobic bile acids act as ligands modulating vitamin D receptors, muscarinic receptors, and calcium-activated potassium channels, important proteins in the inner ear system. Currently, there are limited resources investigating the therapeutic effects of bile acid on hearing loss and little to no information on detecting bile acids in the remote ear system, let alone baseline bile acid levels and their prevalence in healthy and disease conditions. This review presents both hydrophilic and hydrophobic human bile acids and their tissue-specific effects in modulating cellular integrity, thus considering the possible effects and extended therapeutic applicability of bile acids to the inner ear tissue.
Collapse
Affiliation(s)
- Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Melissa A Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Susbin R Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth 6009, Western Australia, Australia
| |
Collapse
|
2
|
Luo HM, Ye JR, Pu FQ, Luo HL, Zhang WJ. Role and therapeutic target of P2X2/3 receptors in visceral pain. Neuropeptides 2023; 101:102355. [PMID: 37390743 DOI: 10.1016/j.npep.2023.102355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Visceral pain (VP) is caused by internal organ disease. VP is involved in nerve conduction and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.
Collapse
Affiliation(s)
- Hong-Mei Luo
- Department of Rheumatology, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province 343000, China
| | - Jia-Rong Ye
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China
| | - Fan-Qin Pu
- Department of Rheumatology, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province 343000, China
| | - Hong-Liang Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China.
| |
Collapse
|
3
|
Guo CR, Zhang ZZ, Zhou X, Sun MY, Li TT, Lei YT, Gao YH, Li QQ, Yue CX, Gao Y, Lin YY, Hao CY, Li CZ, Cao P, Zhu MX, Rong MQ, Wang WH, Yu Y. Chronic cough relief by allosteric modulation of P2X3 without taste disturbance. Nat Commun 2023; 14:5844. [PMID: 37730705 PMCID: PMC10511716 DOI: 10.1038/s41467-023-41495-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
P2X receptors are cation channels that sense extracellular ATP. Many therapeutic candidates targeting P2X receptors have begun clinical trials or acquired approval for the treatment of refractory chronic cough (RCC) and other disorders. However, the present negative allosteric modulation of P2X receptors is primarily limited to the central pocket or the site below the left flipper domain. Here, we uncover a mechanism of allosteric regulation of P2X3 in the inner pocket of the head domain (IP-HD), and show that the antitussive effects of quercetin and PSFL2915 (our nM-affinity P2X3 inhibitor optimized based on quercetin) on male mice and guinea pigs were achieved by preventing allosteric changes of IP-HD in P2X3. While being therapeutically comparable to the newly licensed P2X3 RCC drug gefapixant, quercetin and PSFL2915 do not have an adverse effect on taste as gefapixant does. Thus, allosteric modulation of P2X3 via IP-HD may be a druggable strategy to alleviate RCC.
Collapse
Affiliation(s)
- Chang-Run Guo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhong-Zhe Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xing Zhou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Meng-Yang Sun
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tian-Tian Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yun-Tao Lei
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yu-Hao Gao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qing-Quan Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chen-Xi Yue
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yu Gao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi-Yu Lin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Cui-Yun Hao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Ming-Qiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
| | - Wen-Hui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Sivcev S, Kudova E, Zemkova H. Neurosteroids as positive and negative allosteric modulators of ligand-gated ion channels: P2X receptor perspective. Neuropharmacology 2023; 234:109542. [PMID: 37040816 DOI: 10.1016/j.neuropharm.2023.109542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
Neurosteroids are steroids synthesized de novo in the brain from cholesterol in an independent manner from peripheral steroid sources. The term "neuroactive steroid" includes all steroids independent of their origin, and newly synthesized analogs of neurosteroids that modify neuronal activities. In vivo application of neuroactive steroids induces potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the γ-aminobutyric acid type-A receptor (GABAAR). However, neuroactive steroids also act as positive or negative allosteric regulators on several ligand-gated channels including N-methyl-d-aspartate receptors (NMDARs), nicotinic acetylcholine receptors (nAChRs) and ATP-gated purinergic P2X receptors. Seven different P2X subunits (P2X1-7) can assemble to form homotrimeric or heterotrimeric ion channels permeable for monovalent cations and calcium. Among them, P2X2, P2X4, and P2X7 are the most abundant within the brain and can be regulated by neurosteroids. Transmembrane domains are necessary for neurosteroid binding, however, no generic motif of amino acids can accurately predict the neurosteroid binding site for any of the ligand-gated ion channels including P2X. Here, we will review what is currently known about the modulation of rat and human P2X by neuroactive steroids and the possible structural determinants underlying neurosteroid-induced potentiation and inhibition of the P2X2 and P2X4 receptors.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
5
|
P2 Receptors: Novel Disease Markers and Metabolic Checkpoints in Immune Cells. Biomolecules 2022; 12:biom12070983. [PMID: 35883539 PMCID: PMC9313346 DOI: 10.3390/biom12070983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular ATP (eATP) and P2 receptors are novel emerging regulators of T-lymphocyte responses. Cellular ATP is released via multiple pathways and accumulates at sites of tissue damage and inflammation. P2 receptor expression and function are affected by numerous single nucleotide polymorphisms (SNPs) associated with diverse disease conditions. Stimulation by released nucleotides (purinergic signalling) modulates several T-lymphocyte functions, among which energy metabolism. Energy metabolism, whether oxidative or glycolytic, in turn deeply affects T-cell activation, differentiation and effector responses. Specific P2R subtypes, among which the P2X7 receptor (P2X7R), are either up- or down-regulated during T-cell activation and differentiation; thus, they can be considered indexes of activation/quiescence, reporters of T-cell metabolic status and, in principle, markers of immune-mediated disease conditions.
Collapse
|
6
|
Piyasirananda W, Beekman A, Ganesan A, Bidula S, Stokes L. Insights into the Structure-Activity Relationship of Glycosides as Positive Allosteric Modulators Acting on P2X7 Receptors. Mol Pharmacol 2020; 99:163-174. [PMID: 33334897 PMCID: PMC7816042 DOI: 10.1124/molpharm.120.000129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
P2X7 is an important ligand-gated ion channel expressed in multiple immune cell populations. This study aimed to investigate the chemical requirements of triterpenoid glycosides within a new binding pocket to characterize the structure-activity relationship. A set of glycosides were screened for positive modulator activity at human P2X7 using a YO-PRO-1 dye uptake assay in HEK-293 cells stably expressing the wild-type human P2X7 variant (HEK-hP2X7 cells). The highest positive modulator activity was with ginsenoside–compound K (CK), containing a monosaccharide (glucose) attached at carbon-20. Ginsenoside-20(S)-Rg3, containing a disaccharide group (glucose-glucose) at carbon-3, displayed positive modulator activity with a reduced EC50 for ATP and increased maximal response at human P2X7. The epimer 20(R)-Rg3 was inactive. A similar stereo-specific pattern was observed for 20(S)-Rh2. Ginsenoside-F1, highly similar to ginsenoside-CK but containing a single additional hydroxyl group, was also inactive at P2X7. Computational docking suggests hydrophobic residues in the pocket are involved in steric discrimination between triterpenoids, whereas the position and identity of the carbohydrate group are important for positive modulator activity at human P2X7. Ginsenosides containing monosaccharide attachments perform better than di- or trisaccharide glycosides. Additional modifications to the triterpenoid scaffold at carbon-6 are not tolerated. Gypenosides from plant sources other than Panax ginseng (gypenoside XVII, gypenoside XLIX, stevenleaf) can also act as positive allosteric modulators of P2X7. We also investigated the effect of positive allosteric modulators on endogenous P2X7 in THP-1 monocytes and confirmed our findings in a calcium response assay. A cell viability assay showed potentiation of ATP-induced cell death with ginsenoside-CK in THP-1 and HEK-hP2X7 cells.
Collapse
Affiliation(s)
- Waraporn Piyasirananda
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
7
|
Di Virgilio F, Vultaggio-Poma V, Sarti AC. P2X receptors in cancer growth and progression. Biochem Pharmacol 2020; 187:114350. [PMID: 33253643 DOI: 10.1016/j.bcp.2020.114350] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that ion channels have a crucial role in tumors, either as promoters of cancer cell growth, or modulators of immune cell functions, or both. Among ion channels, P2X receptors have a special status because they are gated by ATP, a common and abundant component of the tumor microenvironment. Furthermore, one P2X receptor, i.e. P2X7, may also function as a conduit for ATP release, thus fuelling the increased extracellular ATP level in the tumor interstitium. These findings show that P2X receptors and extracellular ATP are indissoluble partners and key regulators of tumor growth, and suggest the exploitation of the extracellular ATP-P2X partnership to develop innovative therapeutic approaches to cancer.
Collapse
|