1
|
Wang Y, Riedstra B, Groothuis T. Effects of maternal androgens and their metabolite etiocholanolone on prenatal development in birds. J Exp Biol 2024; 227:jeb247205. [PMID: 39037123 PMCID: PMC11418167 DOI: 10.1242/jeb.247205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Offspring phenotypes can be affected by maternal testosterone and androstenedione (A4), which are considered a tool of mothers to adjust offspring to a fluctuating environment. Yet testosterone and A4 are very rapidly metabolized by developing avian embryos, suggesting that either the maternal testosterone and A4 have potent organizational effects on the embryos extremely early before being metabolized or it is the metabolites that evoke phenotypic variation in the offspring. One of the metabolites, etiocholanolone, increases substantially during early embryonic development and is a likely candidate for mediating maternal effects as it can promote erythropoiesis. To investigate and compare the effects of testosterone and A4 with the possible effects of etiocholanolone during prenatal embryonic development, we increased their levels in black-headed gull eggs (Larus ridibundus), and used sham-injected eggs as controls. This species usually has 3-egg clutches in which maternal androgen levels increase with the egg-laying sequence. We analysed embryonic heart rate, peri-hatching biometric traits, the ratio of white to red blood cells (W/R ratio) and bursa development. We found that testosterone and A4 treatment increased embryonic heart rate irrespective of egg-laying sequence and decreased bill length and W/R ratio, whereas etiocholanolone did not mimic these effects. Instead, etiocholanolone treatment decreased tarsus length and brain mass. Our finding that etiocholanolone does not mimic the effects induced by testosterone and A4 suggests that the embryonic metabolism of maternal testosterone and A4 can potentially diversify the function of these maternal androgens.
Collapse
Affiliation(s)
- Yuqi Wang
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, 9700 AB Groningen, The Netherlands
| | - Bernd Riedstra
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, 9700 AB Groningen, The Netherlands
| | - Ton Groothuis
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, 9700 AB Groningen, The Netherlands
| |
Collapse
|
2
|
Koskivuori J, Voutilainen R, Storvik M, Häkkinen MR, Uusitalo L, Keski-Nisula L, Backman K, Auriola S, Lehtonen M. Comparative steroid profiling of newborn hair and umbilical cord serum highlights the role of fetal adrenals, placenta, and pregnancy outcomes in fetal steroid metabolism. J Steroid Biochem Mol Biol 2023; 232:106357. [PMID: 37390977 DOI: 10.1016/j.jsbmb.2023.106357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Previous steroid hormone studies concerning pregnancy and newborns have mainly focused on glucocorticoids; wider steroid profiles have been less commonly investigated. Here, we performed a comparative analysis of 17 steroids from newborn hair and umbilical cord serum at the time of delivery. The study participants (n = 42, 50% girls) were a part of the Kuopio Birth Cohort and represent usual Finnish pregnancies. The hair and cord serum samples were analyzed with liquid chromatography high resolution mass spectrometry and triple quadrupole tandem mass spectrometry, respectively. We detected high individual variations in steroid hormone concentrations in both sample matrices. The concentrations of cortisol (F), corticosterone (B), estrone (E1), estradiol (E2), dehydroepiandrosterone (DHEA), 11β-hydroxyandostenedione (11bOHA4), 5α-androstanedione (DHA4), and 17α-hydroxypregnenolone (17OHP5) correlated positively between cord serum and newborn hair samples. In addition, F and 11bOHA4 concentrations correlated positively with each other in both newborn hair and cord serum samples. The cortisone-to-cortisol ratio (E/F) was significantly higher in cord serum than in newborn hair samples reflecting high placental 11βHSD2 enzyme activity. Only minor sex differences in steroid concentrations were observed; higher testosterone (T) and 11-deoxycortisol (S) with lower 11bOHA4 in male cord serum, and higher DHEA, androstenedione (A4) and 11bOHA4 in female newborn hair samples. Parity and delivery mode were the most significant pregnancy- and birth-related parameters associating with F and some other adrenocortical steroid concentrations. This study provides novel information about intrauterine steroid metabolism in late pregnancy and typical concentration ranges for several newborn hair steroids, including also 11-oxygenated androgens.
Collapse
Affiliation(s)
- Johanna Koskivuori
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland.
| | - Raimo Voutilainen
- Department of Pediatrics, Kuopio University Hospital, P.O. Box 100, 70029 Kuopio, Finland; Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markus Storvik
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland
| | - Merja R Häkkinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland; Department of Health Security, Finnish Institute for Health and Welfare, Neulaniementie 4, 70210 Kuopio, Finland
| | - Lauri Uusitalo
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - Leea Keski-Nisula
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - Katri Backman
- Department of Pediatrics, Kuopio University Hospital, P.O. Box 100, 70029 Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland
| |
Collapse
|
3
|
Fukami M. 11-Oxyandrogens from the viewpoint of pediatric endocrinology. Clin Pediatr Endocrinol 2022; 31:110-115. [PMID: 35928376 PMCID: PMC9297174 DOI: 10.1297/cpe.2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
11-Oxyandrogens, such as 11-ketotestosterone (11-KT), 11-ketodihydrotestosterone
(11-KDHT), 11β-hydroxytestosterone (11-OHT), 11β-hydroxyandrostenedione (11-OHA4), and
11-KA4, are newly specified human androgens. These 11-oxyandrogens are present in the cord
blood and placenta, as well as in the blood of men and women of various ages, and are
produced primarily in the adrenal gland. Accumulating evidence suggests that these
steroids contribute to androgen excess in patients with 21-hydroxylase deficiency or
polycystic ovary syndrome. More importantly, unlike classic androgens, 11-oxyandrogens
produced in maternal tumors can pass through the placenta without being converted into
estrogens, and cause severe virilization of female fetuses. Thus, overproduction of
11-oxyandrogens represents a new mechanism of 46,XX disorders of sex development. On the
other hand, the physiological roles of 11-oxyandrogens remain to be clarified. This
mini-review introduces the current understanding of 11-oxyandrogens, from the perspective
of pediatric endocrinology.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|